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Abstract—We present an approach to random access that is
based on three elements: physical-layer network coding, signature
codes and tree splitting. In presence of a collision physical-layer
network coding enables the receiver to decode the sum of the
information that was transmitted by the individual users. For
each user this information consists of the data that the user wants
to communicate as well as the user’s signature. As long as no more
than K users collide, their identities can be recovered from the
sum of their signatures. A splitting protocol is used to deal with
the case that more than K users collide. We demonstrate that
compared to, for instance coded random access, our approach is
significantly increasing the performance of the system, both in
terms of user resolution rate as well as overall throughput of the
system.

I. INTRODUCTION

Uncertainty is the essential element of communication
systems. In an information-theoretic setting, uncertainty is
associated with noise, while in the context of communica-
tion protocols, uncertainty is associated with traffic (packet)
arrivals at the users. A canonical example of the latter is seen
in random access protocols, used for handling transmissions
of users to a common receiver, e.g., a base station, over a
shared wireless medium. Random access is necessary when
the total number of users associated with the base station is
very large, but at a given short time interval, the number of
active users that have packets to transmit is small and a priori
not known. Such is the case for wide-area networks of sensors,
where each sensor has a sporadic traffic pattern. The goal of
random access protocols is to enable each of the active users
to eventually send her packet successfully.

Traditionally, random access protocols have been designed
under the collision model: when two or more users transmit at
the same time, a collision occurs and all involved transmissions
are lost. In other words, collisions are considered as destructive
and the information contained in them irrecoverable. There-
fore, the objective of classical random access protocols, such
as ALOHA [1] or splitting tree [2], is to ensure that each
user gets the opportunity to send its packet without collision.
Recently, a generalization of the collision model, obtained by
including a more elaborate physical-layer model, brings in the
possibility for Successive Interference Cancellation (SIC) and
gives rise to a new class of protocols, termed coded random
access [3]. The main feature of this model is that a collision
is treated as a sum of packets and, instead of being discarded,
it can be buffered and reused in a SIC-based decoding. We

illustrate this through a simple example, in which the received
signals in the first two slots are:

Y1 = X1 +X2 + Z1,

Y2 = X2 + Z2, (1)

where X1 and X2 are the two useful signals (packets) and Z
is the noise. The received signal Y1 is buffered, and, if the X2

is successfully decoded from the singleton slot Y2, it can be
subtracted (i.e., cancelled) from Y1, effectively reducing the
first slot to a singleton. The receiver proceeds by attempting
to decode X1 from the noisy signal Y1 −X2 = X1 + Z.

An important constraint for protocol operation is that the
useful signals must carry embedded pointers that inform the
receiver where their replicas occurred. In the above example,
the replica of X2 in Y2 has a pointer that indicates that another
replica occurred in Y1, so that the receiver, after decoding
Y2, also learns that a replica of X2 can be cancelled from
X1. Another important aspect of SIC-based coded random
access protocols it that the receiver buffers analog signals that
contain noise. Hence, the uncertainty brought by the noise
persists while the protocol resolves the uncertainty about the
set of active users. This is fundamentally changed by applying
the ideas of Physical Layer Network Coding (PLNC) to the
problem of random access. The key idea in PLNC is to decode
a function of multiple received signals, rather than decoding
the individual signals.

Such operation is termed denoise-and-forward (DNF) [4],
[5] or compute-and-forward (CF) [6]. Let us reuse the example
(1) and assume that W1 and W2 represent the data bits that
are mapped to the baseband signals x1 and x2, respectively.
Upon receiving y1 from (1), the base station stores the bitwise
XOR W1 ⊕W2. If x2 (W2) is decoded from y2, then W1 is
recovered by XOR-ing W2 with the stored signal W1 ⊕W2.
We can, therefore, say that the use of DNF (CF) removes the
uncertainty of the noise from the protocol and deals only with
the uncertainty of the contending set of users.

One of the main limitations of SIC-based coded random
access is that the receiver must wait until it successfully
decodes a packet from a singleton slot in order to start and
maintain its operation. For example, let the receiver get the
following signals in the first three slots:

Y1 = X1 +X2 + Z1,

Y2 = X1 +X3 + Z2,



Y3 = X2 +X3 + Z3. (2)

These are three (noisy) equations with three unknowns
X1, X2, X3 and, in principle the receiver should be able to
recover all three signals by using the same techniques used
to decode multiple streams in a MIMO transmission [7].
However, recall that in a setup with random access, the
receiver has no knowledge about the set of transmitting users,
e.g., in this case it does not know that X1 is sent in slots 1 and
2, x2 in slots 1 and 3, etc. It therefore needs to wait to receive,
e.g., Y4 = X1 +Z4, decode X1 and learn from the embedded
pointers in which other slots had X1 been sent, such that it
can be canceled. This fundamental limitation of SIC-based
random access sets the motivation to introduce PLNC-based
random access with signatures [8]. For the example (2) and the
simplest case of F2 functions, in PLNC-based random access
the receiver stores the following three (noiseless) digital binary
signals:

V1 = W1 ⊕W2,

V2 = W1 ⊕W3,

V3 = W2 ⊕W3. (3)

In this way the receiver observes a noiseless XOR multiple
access channel. The `−th user applies the following com-
munication strategy: she prepends a signature W s

` , consist-
ing of predefined number of bits, to the pure data W d

` in
order to obtain W`. The signature is based on a code that
has the following property: if at most K users transmit in
a given slot, then from the integer sum of the signatures
W s

1 +W s
2 + · · · +W s

L,1 L ≤ K, the receiver knows exactly
which transmitters have contributed to the XOR-ed data stored
in the present slot. In other words, the sum:

L∑
`=1

W s
` (4)

is uniquely decodable if L ≤ K. Referring to the example (3),
the receiver will be able to decode the individual data already
after the third slot. The receiver also detects if the number of
users sending in a slot is larger than K, and the stored XOR
combination cannot be used for decoding based on signatures.
It may, however, still be used further in the decoding process,
as detailed in the sequel.

In this paper we leverage the idea of PLNC-based ran-
dom access and design a Contention Resolution Algorithm
(CRA) that uses signatures. In contrast to collision avoidance
protocols [1], contention resolution protocols [2], [10], [11]
are efficient in terms of resolving collisions when they occur.
The conventional contention resolution algorithms drive the
set of contending users towards the state in which each user
gets the opportunity to transmit without interference from the
others. On the other hand, the use of signatures and PLNC
generalizes the concept of collision by allowing the receiver
to have a metadata (i.e., the knowledge of the set of colliding

1This integer sum is obtained from the PLNC output
⊕L

`=1W
s
` , by making

use of a result by Nazer [9].

users) about the observed collision. This feature fundamentally
changes the objective of a CRA: the set of contending users
should be driven in a state where the receiver gets a sufficient
number of equations in the finite field in order to be able
to decode the users’ data. We provide details on the basic
tradeoffs and mechanisms that needs to be considered for a
CRA based on PLNC and signatures. The results show that
the use of signatures is significantly reducing the average time
required to extract useful information from the collisions and
therefore improve the overall throughput of the system.

The idea of using SIC in framed ALOHA setting was
first proposed in [12]. The analogies of SIC-based ALOHA
with erasure-coding theory were identified in [13], establishing
the paradigm of the coded random access that was further
developed in [14]–[16]. It was shown that coded random
access achieves throughputs that asymptotically tend to 1.
The highest non-asymptotic throughputs were, so far, reported
in [17]; e.g., when number of contending users is 1000, the
expected throughput is 0.88.

The use of SIC in the contention resolution framework was
first investigated in [18]. Here it was shown that enhancing
the original tree-splitting scheme [2] with SIC doubles the
asymptotically achievable throughput to 0.693. Another ap-
proach was suggested in [19], where SIC was employed over
a set of partially split trees, and optimization was performed
over the splitting strategy that favors fast SIC evolution. The
reported throughputs for the presented design example in [19]
are close to 0.8.

Finally, the use of PLNC for random access was studied
in [20]–[25] in which it was assumed that the receiver knows
which users are active in each slot. The use of physical-layer
network coding and signature codes was considered in [26]
for broadcast in networks. The combination of physical-layer
network coding and signature codes for random access was
introduced in [8]. In [26] as well as [8] it was assumed that
the number of contending users is bounded. In the current
work we leverage this assumption and design a CRA that can
deal with any number of contending users by incorporating
tree splitting.

The paper is organized as follows. In Section II we introduce
our model. In Section III we present some results on PLNC,
signature codes and tree splitting that will be used in the
remainder. The proposed strategy is presented in detail in
Section IV. The performance of the strategy is analyzed in
Section V. The discussion and concluding remarks are given
in Section VI.

II. MODEL AND PROBLEM STATEMENT

We consider a system that has a total of M devices (users).
Each of the users is assigned a unique identity from the set
{1, . . . ,M}. For notational convenience in the remainder we
assume that M is prime. Each user sporadically gets a data
packet that needs to be sent to a receiver that is common for all
users. The users that have data to transmit wait for a beacon
sent by the common receiver, which marks the start of the
contention process. In our model, the probability that a user



has a packet to transmit when the beacon is sent is p, where
p is rather small, i.e., pM << M .

Let L denote the set of contending users and let L = |L|.
The receiver does not know L, otherwise the contention
problem would have been trivial - the receiver would simply
schedule the users from L. The scheduling can be based by
asking the users to transmit with rates that correspond to a cer-
tain point within the achievable region of an L−dimensional
multiple access channel. However, the receiver does not know
L and cannot make such a scheduling. In some cases our
interest will be in the performance conditioned on a number
of active users L = L. Note that in that case only L = |L| is
of importance. Since the packet arrivals across the set of users
are independent, L has a binomial distribution: the probability
that L users are active is denoted by q(L) = P (|L| =
L) =

(
M
L

)
pL(1 − p)M−L. For notational convenience, let

q0 = q(0) = (1−p)M . We will be interested in the probability
of having L active users conditioned on the fact there is at least
one. We denote this probability by q̂(L) and it readily follows
that q̂(L) = P (|L| = L||L| > 0) = q(L)/(1 − q0). We will
express some of our results in terms of Ix(a, b), the regularized
incomplete beta function, which is defined as I(x; a, b) =
B(x; a, b)/B(1; a, b) with B(x; a, b) =

∫ x
0
ta−1(1−t)b−1dt.

The reason is that
∑K
L=0 q(L) = I1−p(M −K,K + 1).

The data packet of each contending user consists of D
bits. The channel coefficient between the m−th user and the
receiver is hm. Due to reciprocity, the contending device is
capable to estimate the channel and precode its transmission
by transmitting the signal Xm

hi
. The time starts at τ = 1 and

the τ−th transmitted symbol by the m−th user is denoted by
Xm(τ). Hence, at the τ−th channel use, the receiver observes

Y (τ) =
∑
m∈L

Xm(τ) + Z(τ), (5)

where L is the set of active, contending users. Z(τ) is the
Gaussian noise with unit variance. Each user transmits at the
same rate (in bits/channel use) and one packet transmission has
a duration of a slot that consists of N channel uses. At the
end of each slot, the common receiver provides feedback to the
users. This feedback is instantaneous, error free and received
by all users. We do not impose any constraints on the amount
of feedback that can be provided; we will explicitly specify
how feedback is used later in the paper.

Further, we will assume that the signal of each user needs
to satisfy an average power constraint in each round, i.e.,

1

N

N∑
τ=1

|Xm(τ)|2 ≤ P, (6)

for all m ∈ {1, . . . ,M}. We will assume that P > 1, such
that the Signal-to-Noise Ratio (SNR) is also larger than one,
which is required to have a nontrivial computation rate over
the multiple access channel, as seen in the next section. The
reader may object that the actual transmitted power by the
user can be much higher than P , since each user inverts the
channel. This can be addressed by assuming that a user that

observes a channel with |hm| lower than a threshold, does not
join the set of contending users; in that case the probability p
also accounts for the fact that the user channel is sufficiently
strong, in addition to the assumption that the user has a packet
to send.

For simplicity, as it is common in PLNC schemes,
we assume that the channel input/outputs are real, i.e.,
Xm(τ), Z(τ), Y (τ) ∈ R. The results are readily transferable
to the case of complex symbols, by doubling the number of
bits per channel use.

The goal of this paper is to devise a protocol that allows the
receiver to retrieve both the identities and the data packets of
the all active users. The constituent elements of the protocol
are use of contention resolution mechanism across slots,
dealing with randomness of the user activity pattern, and use
of forward error correcting code within slots, dealing with
noise. With respect to the latter, we ignore finite block length
effects and assume that forward error correcting codes operate
with zero error at any rate up to and including capacity. As a
consequence, the task for the receiver is to recover all packets
with zero error probability.

We are interested in the following performance parameters.
By S(L) we denote the expected number of slots that the
protocol uses to resolve L contending users, where the ex-
pectation in S(L) is w.r.t. the randomness in the contention
resolution mechanism. By Rres(L) = L/S(L) we denote the
expected number of users that is resolved per slot. We are also
interested in Rres, obtained by averaging Rres(L) over L, i.e.,

Rres = E[Rres(L)|L > 0] =

M∑
L=1

L

S(L)
q̂(L). (7)

Further, we are interested in the effective number of bits that
is transmitted across the channel per channel use (i.e., , net
rate), denoted by Rnet(L). Taking into account that L users
each transmit D bits in a total of S(L) slots that each consist
of N channel uses we have

Rnet(L) =
LD

S(L)N
= Rres(L)

D

N
. (8)

Finally, we are interested in the net rate averaged over L, i.e.,
Rnet = E[Rnet(L)|L > 0].

III. PRELIMINARIES

A. Signature codes

We are interested in signature coding for the multiple access
adder channel with q-ary inputs and additions over integers,
when only up to K random users, out of total M users, are
active. So far, there has been a lot of work investigating the
case when the signature symbols are binary, i.e., q = 2; a
summary of the known asymptotic results has been presented
in [27]. However, the case of general q has been significantly
less studied.

In this paper, we adopt the Lindström’s signature coding
construction, as presented in [27, pp. 42 - 43]. The construction
is designed for the case that the number of users M is a
prime number; if M is not prime, one could design signatures



for the smallest prime number larger than M and use just
M signatures. For easier exposition, we have assumed in
Section II that M is prime. The construction is performed
in the following way: choose integers si, i = 1, ...,M such
that

asi = a+ bi, i = 1, ...,M, (9)

where a is a primitive element of FMK and bi, i = 1, ...,M ,
are elements of FM . It can be shown that: (i) integers si, i =
1, ...,M , exist, (ii) 0 < si < MK − 1 and, most importantly,
(iii) the sums of subsets of si of at most cardinality K have
unique values, i.e., ∑

i∈U1

si 6=
∑
i∈U2

si, (10)

for any U1, U2 ⊂ {1, . . . ,M}, |U1| ≤ K, |U2| ≤ K and
U1 6= U2.

The signature of user i is denoted by W s
i . It is a sequence

of symbols taking values from {0, . . . , q−1} in which the first
symbol has value 1 and the remaining symbols are the q-ary
representation of the integer si. Recall from Section I that the
receiver will be dealing with the symbolwise addition (over
the integers) of signatures. Since the first symbol is 1 for all
users the receiver can immediately detect how many users are
active and, therefore, determine whether the sum of signatures
si is uniquely decodable. It is shown in [27] that in that case
also the symbolwise sum of the W s

i is uniquely decodable.
The number of q-ary symbols in the above signature code is

dlogq(MK − 1)e+ 1 ≤ K logqM + 2. (11)

Since all rates in this paper are expressed in terms of bits
per channel use we express the length of W s

i in terms of the
equivalent number of bits. Let Nw denote the length of W s

i

in terms of bits. We have

Nw ≤ log2
(
K logqM + 2

)
≤ (K + 2) log2M, (12)

which holds if q ≤ M . From above, we have the following
result.

Theorem 1 ( [27]. pp. 43). If q ≤ M there exist q-ary K-
out-of-M signature codes that satisfy

Nw ≤ (K + 2) log2M. (13)

B. Reliable physical-layer network coding

Another key ingredient of the random access strategy that
is proposed in this paper is to employ physical-layer network
coding (PLNC), i.e., to organize the physical layer in such a
way that the receiver can reliably decode sums of messages
that are simultaneously transmitted by users. This requires a
suitable choice of the forward error correcting codes as well
as the decoding mechanism that is used by the receiver. In
this section we provide a short introduction to physical-layer
network coding and a result from [6] that will be needed
later. There are various angles at which physical-layer network
coding be approached, for instance denoise-and-forward [4]
or compute-and-forward [6]. A survey of these and other

PLNC Encoder 1

PLNC Encoder 2

AWGN

Multi-access

Channel

PLNC Decoder

Noiseless Fq adder channel

Fig. 1. Physical-layer network coding (PLNC) results in a noiseless Fq adder
channel. (K = 2 users)

approaches is given in [28] and [29]. In this paper we adopt
the compute-and-forward framework as developed by Nazer
and Gastpar in [6].

In order to formulate the result from [6] that we need in the
remainder we consider an arbitrary number of L transmitters.
User ` has data W` to transmit, where

W` = (W`(1),W`(2), . . . ,W`(κ)), (14)

with W`(j) ∈ Fq , q prime. Each transmitter uses the same
linear code F to encode the data into real-valued channel input
of length N (i.e., the length of a slot) that satisfies an average
power constraint P . Let X` = F (W`) denote the channel
input of user `. The decoder, upon observing Y =

∑L
`=1X`+

Z attempts to decode (
⊕

`W`(1), . . . ,
⊕

`W`(κ)), where
⊕

denotes adition in Fq . In this sense, the receiver recovers a
function (namely, the sum) of the original messages, which is
why this approach is referred to as computation coding. In a
sense, as illustrated in Figure 1, we turn the AWGN channel
in a noiseless Fq adder channel.

We denote by Rplnc the rate of F , i.e., Rplnc = κN−1 log2 q
bits per channel use. We will refer to Rplnc as the computation
rate and say that it is achievable if the probability of decoding
erroneously can be made arbitrarily small by increasing n. The
next result follows directly from the main result in [6].

Theorem 2 ( [6], Theorem 1). For the standard AWGN
multiple-access channel the following computation rate is
achievable:

Rplnc =
1

2
log+2 (P ) . (15)

The above result does not exactly match the achievable rate
as given in [6, Theorem 1], which is 1

2 log
+
2

(
1
L + P

)
. Since

we will be dealing with an unknown number of active users
we use a computation rate that is valid for any number of
active users.

The signature codes that we introduced in Section III-A
operate over the adder channel with q-ary inputs and ad-
ditions over the integers. It is important to note that the
computation code as described above does not provide an
adder channel, but instead provides additions in the finite



field Fq . Therefore, we need an additional result that enables
us to lift the computation code result to an integer adder
channel. Such a result is provided by Nazer in [9]. The
result states that once the receiver has successfully decoded
(
⊕

`W`(1), . . . ,
⊕

`W`(κ)), i.e., the sum over Fq , it is also
possible to recover the integer sum. To state the result more
precisely, we create a mapping between the elements of Fq
and the integers {0, 1, . . . , q − 1}. Since we consider q prime
such a mapping is trivial. Indeed, additions in Fq are mod q
operations and the elements of Fq are naturally identified with
the integers {0, 1, . . . , q − 1}. With slight abuse of notation
we denote by (

∑
`W`(1), . . . ,

∑
`W`(κ)) the sums of the

integers that are identified with the Fq elements W`(k). It was
shown in [9] that at Rplnc as given in Theorem 2 the receiver
can retrieve the integer sum

∑
`W`.

C. Tree splitting

We briefly outline the basic binary tree-splitting algorithm
under a collision model [2]. Let L denote the set of active
users and L = |L|, 1 ≤ L ≤M , denote the number of active
users. In the first slot all L users transmit a packet. If L = 1
the receiver succesfully decodes the packet of the user and
the contention period ends. If L ≥ 2 a collision occurs and
the receiver does not obtain any useful information. The users
probabilistically split into two groups L1 and L2. The splitting
is uniform at random and independent over users, i.e., each
user flips a fair coin to decide on the group to join. Both
groups then contend for the medium in the same fashion: first
the users from L1, then the users from L2. The splitting is
done recursively, eventually leading to an instance in which
only a single user is active and her transmission is successfully
received. The algorithm continues until the transmissions of
all active users from L are successfully received. By means of
feedback after each slot the receiver informs the users whether
there was a collision, a single or no transmission present,
directing the future actions of the contending users.

The above described tree splitting and its variations were
thoroughly analyzed in the literature, assessing the perfor-
mance parameters such as throughput, delay, and stability. The
work closest to ours is presented in [10], the most important
difference being that we assess a generalized case when the
collision occurs when L > K, where K ≥ 1. In other words,
the use of signatures in the proposed protocol allows for direct
exploitation of the slots containing up to K user transmissions,
and not just singleton slots. The related analysis, which also
covers the special case K = 1, is presented in Section V.

IV. PROPOSED STRATEGY

We start with an overview of the proposed random access
strategy. The strategy operates in rounds; in each round, the
active users transmit the PLNC encoded concatenation of their
signatures and payloads. Use of PLNC enables the receiver to
reliably obtain the q−ary sums of the user transmissions, As
long as there are at most K active users, the receiver is able to
uniquely decode their signatures, detect which users are active

`

Signature encoder

Wd
`

W s
` Wd

` PLNC encoder

X`

Encoder

Fig. 2. Illustration of the encoder for user ` in one slot.

X1

X2

X3

Z+

PLNC decoder

∑
`W

s
`

⊕
`W

d
`

Signature decoder

⊕3
i=1W

d
i

1, 2, 3

Decoder

Fig. 3. Illustration of the decoder in one slot. (L = 3 users).

and exploit this information to direct the active users towards
solving the linear combination of their payloads.

The receiver is also able to detect when more then K users
are active. As explained in Section III-A this is enabled by
the additional symbol that is prepended to the signatures and
that is one for each user. By observing the integer sum that is
decoded in this position the receiver directly learns the number
of active users. If more than K users are active the receiver
instructs the users to randomly split in two groups and the
strategy is then executed in a recursive fashion for each of
these groups. We proceed by presentation of the details.



A. Encoder

Let W s
` and W d

` denote the strings representing the signa-
ture and the data payload, respectively, of the active user `.
According to Theorem 1 the number of bits in a signature is
not more than (K+2) log2M . The concatenation of signature
and payload W` = W s

` ‖W d
` is used as the input of a PLNC

encoder. Recall from Section III-B that the PLNC encoder
applies a linear forward error correcting code, the same code
F for all users. The output of the PLNC encoder, denoted by
X` = F (W`) = F (W s

` ‖W d
` ), is a channel input of user `.

The operation of the encoder of a single user in one block is
illustrated in Figure 2.

B. Decoder

The receiver observes Y , which is a real sum sum of X`,
` ∈ L and additive noise Z,∑

`∈L

F (W`) + Z. (16)

It uses a PLNC decoder to decode Y and obtain⊕
`∈L

W`, (17)

which decomposes into the sums of the signatures
⊕

`∈LW
s
`

and the sums of the codewords
⊕

`∈LW
d
` . Recall from

Section III-B that, once we have obtained the sum
∑
`∈LW

s
`

over the finite field Fq , we can also interpret the elements of
W` as integers and recover the integer sum

∑
`∈LW

s
` .

Since the first symbol in the signature of all users is 1, we
directly obtain L = |L|, the number of active users, from the
first symbol in

∑
`∈LW

s
` . If L ≤ K, by the property of the

signature code we obtain L itself. If L > K no information
about L can be obtained in this round. The operation of the
decoder is illustrated in Figure 3.

C. User resolution for L ≤ K
If L = |L| ≤ K the receiver has exact knowledge of L.

Moreover, it has received the sum of the messages
∑
`∈LW

d
` .

By making use of the feedback mechanism to the users, the
receiver ensures that in the next L − 1 rounds L − 1 of the
users in L are individually transmitting their messages. This
can be achieved by, for instance, signalling the identity of one
the users in the feedback at the end of a round. In that case the
feedback acts as an ACK as well as a scheduling mechanism.

D. User resolution for L > K

In case L > K the receiver signals this fact via feedback.
All users in L now participate in a splitting protocol with
uniform splits in two groups. Each user independently of the
other users draws a uniformly distributed random number from
{1, 2}. All users with value 1 enter a new contention resolution
phase. The users with value 2 wait until this phase ends and
start another contention resolution phase afterwards. If there
are more than K users in one of these groups the splitting
procedure is applied recursively.

In the next section we analyze the proposed strategy,
parametrized on the values of K. Note that case K = 1

0 5 10 15 20
0

10

20

30

L

S

K = 1

K = 4

K = 16

Fig. 4. S(L) and its bounds for various values of K. Upper and lower bounds
in dotted and dashed lines, respectively. Exact values of S(L) in solid lines.

K α∗ β∗

1 2 3.5
2 1.5 2.278
4 1.25 1.663
8 1.125 1.348

16 1.063 1.18

TABLE I
VALUES FOR α∗ AND β∗ THAT SERVE IN THE BOUNDS ON S(L).

reduces the scheme to the traditional tree splitting protocol
that was discussed in Section III-C.

V. ANALYSIS

A. User resolution rate

We provide an analysis in terms of a recursive expression for
S(L), the expected number of slots in a contention period in
terms of the number of active users L. The analysis is similar
to the one by Massey [10]. We start by stating the main result
of this section; the proof is given in Appendix A.

Theorem 3. S(L) = L if 1 ≤ L ≤ K, and, for L > K

α∗L− 1 ≤ S(L) ≤ β∗L− 1, (18)

where α∗ = 1 + 1
K and β∗ = 1 + 1

(K+1)(2K−1) +
2

K+1 + 1
K .

In Figure 4 we have illustrated S(L) as well as the above
bounds for various values of K. In Table I we provide a
numerical evaluation of the bounds.

From Theorem 3 we derive results on Rres, the expected
number of users that is resolved per slot.

Theorem 4. The expected number of users that is resolved
per round is lower bounded as

Rres ≥
β∗I1−p(M−K,K+1) + Ip(K+1,M−K)− q0β∗

(1− q0)β∗
.

(19)
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Fig. 5. Lower bounds on Rres, the expected number of users that is resolved
per slot. (M = 1031)

Proof: We have

Rres =

M∑
L=1

L

S(L)
q̂(L) (20)

≥
K∑
L=1

q̂(L) +

M∑
L=K+1

L

β∗L− 1
q̂(L) (21)

≥ (1− q0)−1
(

K∑
L=0

q(L) +
1

β∗

M∑
L=K+1

q(L)− q0

)
(22)

=
β∗I1−p(M−K,K+1) + Ip(K+1,M−K)− q0β∗

(1− q0)β∗
.

(23)

The result is illustrated in Figure 5 as a function of K for
various values of p.

B. Rate in bits per channel use

In the previous subsection we analyzed Rres(L), the ex-
pected number of users that is resolved in a slot. In this section
we consider Rnet(L), which is the overall throughput in bits
per channel use that is effectively transmitted.

It is readily verified that from Theorems 1, 2 and 4 it follows
that

Rnet(L) ≥ Rres(L)Rplnc
D

(K + 2) log2M +D
. (24)

This leads to the following corollary to Theorem 4.

Corollary 1. The expected number of bits per channel use
Rnet is at least

Rnet ≥
M∑
L=1

(
M

L

)
pL(1− p)M−L 1

2
log2 (1 + LP ) . (25)

Finally, we consider an information-theoretic upper bound
on Rnet, i.e., an upper bound that must be satisfied by any
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Fig. 6. Lower bounds on Rnet. In dashed line the upper bound on Rnet. In
dotted line the value 1/2 log2(P ). (M = 1031, p = 3/M , P = 102)

protocol. The bound is obtained by assuming that the receiver
knows which users are active and that these users can employ
a multiuser code which is optimaly decoded by the receiver.
Under these assumptions the problem reduces to a standard
Gaussian multi-access channel. The sum rate that can be used
by L active users is

Rnet(L) ≤
1

2
log2 (1 + LP ) . (26)

This immediately leads to

Rnet ≤
M∑
L=1

(
M

L

)
pL(1− p)M−L 1

2
log2 (1 + LP ) . (27)

In Figure 6 we have illustrated our lower bound on Rnet

as a function of D, size the data packet. In addition, Figure 6
illustrates the upper bound (27).

C. Evaluation

Figure 5 shows that as a function of K, Rres quickly ap-
proaches 1. This performance parameter is a baseline measure
of the efficiency of the random access protocols from the
system perspective and is usually refered to a throughput.
Our results clearly demonstrate the potential of the proposed
strategy. Specifically, the proposed strategy outperforms all the
state-of-the-art random access schemes in terms of Rres, cf.
Section I. Figure 5 also shows that K should increase as the
expected number of the active users pM increases, if high
throughputs are to be achieved. Conversely, if K is fixed
the expected throughput drops with p. This implies that one
should design K to match the expected number of active users.
This requirement is similar to the ALOHA-based protocols,
where the optimal values of the protocol parameters, like frame
lengths or user activation probability, depend on the number
of active users [1], [3], [12].

Fig. 6 demonstrates what is the price to pay in information
bits per channel use due to: (i) the overhead related to the use



of signatures and (ii) information waste caused by collisions,
compared to the idealized solution of aforehand knowing the
set of active users and using the optimal multi-user code.
Obviously, this loss is pronounced for low payload lengths D
and diminishes as D increases. Also, it is reflected in Figure 6
that for large D the loss that is incurred is due to the physical-
layer network coding. It is currently an open problem if this
loss is an inherent property of physical-layer network coding
or an artifact of the computation coding construction that is
developed in [6].

It is interesting to observe that the depicted results clearly
suggest that due to the counter balancing of effects (i) and (ii)
there is an optimal choice of K with respect to D. Finally,
we note that the state-of-the-art random access protocols in
general suffer from the same limitations; e.g., in SIC-based
ALOHA solutions one has to invest overhead in pointers to
packet replicas.

VI. DISCUSSION

For the further work we consider extensions dealing with:
errors that occur due physical-layer network coding at finite
block lengths, more general user activity models (including
their absence, as well), sensitivity of the performance param-
eters to the choice of K and variations of the scheme when
the feedback channel is limited.
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APPENDIX A
PROOF OF THEOREM 3

Our proof is very similar in spirit to the proof that appears
in [10] for the case that K = 1.

Let pL(`) denote the probability that a group of L users
split into two groups where one of the groups has size `. We
have

pL(`) =

(
L

`

)
2−L. (28)

Note that pL(0) > 0, i.e., it is possible that there are groups
with no users. Since our analysis is based on a recursive
relation for S(L) we include the case that L = 0. Our first
result provides this recursive result.

Lemma 1.

S(L) =


1, if L = 0,

L, if 1 ≤ L ≤ K,
1 + 2

∑L−1
`=0 pL(`)S(L)

1− 2pL(L)
, if L > K.

(29)

Proof: Since we have a K out of M signature code, we
have S(0) = 1, S(1) = 1, S(2) = 2, . . . , S(K) = K. For

L > K we have the following recursion

S(L) = 1 +

L∑
`=0

pL(`) {S(L) + S(L− `)} (30)

= 1 +

L∑
`=0

{pL(`)S(L) + pL(L− `)S(L− `)} (31)

= 1 + 2

L∑
`=0

pL(`)S(L), (32)

which can be rewritten as

S(L) =
1 + 2

∑L−1
`=0 pL(`)S(L)

1− 2pL(L)
, (33)

by making use of
(
L
L−`
)
=
(
L
`

)
and

∑L
`=1 pL(`)S(L − `) =∑L

`=1 pL(`)S(`).
For notational convenience let γ(L) be defined as

γ(L) =

∑K
i=0 (S(i) + 1) pL(i)∑K

i=0 pL(i)i
. (34)

The reason for introducing γ(L) is that it can be used to
express bounds on S(L). The following result appears in [10].

Lemma 2 ( [10]). If α and β satisfy

α ≤ γ(L) ≤ β (35)

for all L ≥ K + 1, then

αL− 1 ≤ S(L) ≤ βL− 1 (36)

for all L ≥ K + 1.

Next, we provide an upper and a lower bound on γ(L).

Lemma 3.

1+
1

K
≤ γ(L) ≤ 1+

1

(K + 1)(2K − 1)
+

2

K + 1
+

1

K
. (37)

Proof: For the lower bound we have

γ(L) =
1 +

∑K
i=1

(
L
i

)
i+
∑K
i=0

(
L
i

)∑K
i=0

(
L
i

)
i

(38)

≥ 1 +

∑K
i=0

(
L
i

)
K
∑K
i=0

(
L
i

) (39)

= 1 +
1

K
. (40)

For the upper bound we start by rewriting γ(L) as

γ(L) = 1 +
1∑K

i=1

(
L
i

)
i
+

∑K
i=0

(
L
i

)∑K
i=1

(
L
i

)
i

(41)

= 1 +
1∑K

i=1

(
L
i

)
i
+

2
∑K−1
i=0

(
L−1
i

)
+
(
L−1
K

)
L
∑K−1
i=0

(
L−1
i

) (42)

= 1 +
1∑K

i=1

(
L
i

)
i
+

2

L
+ ρ(L), (43)



where

ρ(L) =

(
L−1
K

)
L
∑K−1
i=0

(
L−1
i

) . (44)

The upper bound follows from the observation that the second
and the third term in (43) are decreasing in L and from

ρ(L) =

(
L−1
K

)
L
∑K−1
i=0

(
L−1
i

) =
1
K

(
L−1
K

)
1
KL

∑K−1
i=0

(
L−1
i

) (45)

=
1
K

(
L−1
K

)
L
K

((
L−1
K−1

)
+
∑K−2
i=0

(
L−1
i

)) (46)

<
1
K

(
L−1
K

)
L
K

(
L−1
K−1

) =
1
K

(
L−1
K

)(
L
K

) =
1
K

(
L−1
K

)(
L−1
K

)
+
(
L−1
K−1

) (47)

<
1
K

(
L−1
K

)(
L−1
K

) =
1

K
. (48)

The proof of Theorem 3 follows directly from from Lem-
mas 2 and 3.
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