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Abstract—Energy harvesting is a promising technology for the
Internet of Things (IoT) towards the goal of self-sustainability of
the involved devices. However, the intermittent and unreliable
nature of the harvested energy demands an intelligent man-
agement of devices’ operation in order to ensure the sustained
performance of the IoT application. In this work, we address the
problem of maximizing the quality of the reported data under
the constraints of energy harvesting, energy consumption and
communication channel impairments. Specifically, we propose an
energy-aware joint source-channel coding scheme that minimizes
the expected data distortion, for realistic models of energy
generation and of the energy spent by the device to process
the data, when the communication is performed over a Rayleigh
fading channel. The performance of the scheme is optimized by
means of a Markov Decision Process.

I. INTRODUCTION

A lion’s share of IoT applications involves to scenarios in
which a multitude of devices, i.e., sensors, periodically report
a small amount of data about some monitored phenomena.
A major challenge in this regard is to ensure uninterrupted
service with minimal device maintenance. Specifically, a typ-
ical IoT device is expected to operate for very long periods
without human intervention; the industry aims to achieve a
minimum of 10 years of battery (i.e., device) operation in such
IoT applications [1]–[3]. Obviously, Energy Harvesting (EH)
is a promising technology that can foster the required self-
sustainability of the devices and, thus, of the IoT applications.

On the other hand, the EH process is stochastic in nature,
requiring rethinking and redesign of the devices’ operation
with respect to standard approaches employed for battery-
operated devices. Specifically, in this work, we consider a
monitoring application where a sensor node powered by re-
newable energy sources periodically sends its measurements
to a data gathering point. Before transmission, it performs
processing operations: lossy joint source-channel coding that
maximizes reconstruction fidelity at the receiver, under the
constraints of the EH process. In particular, the reconstruction
fidelity depends on the tradeoff between source compression
accuracy and robustness against the channel impairments, and
is represented in terms of data distortion.

The effect of packet losses on data distortion in stan-
dard communication scenarios, where there are no energy
constraints, has already been treated in, e.g., [4], where the
authors investigate erasure and scalable codes for a Gaussian
source. Several works (e.g., [5]) analyze layered transmission

schemes, where the source is coded in superimposed layers,
and each layer successively refines the description of the
previous one, but is transmitted with a higher coding rate
(i.e., subject to larger outage probability). Often, the distortion
exponent is the adopted as the performance metric for the end-
to-end distortion [6], [7]. Nevertheless, the distortion exponent
is meaningful only for the high SNR regime, which is not
dominant in IoT scenarios.

A general overview of recent advances in wireless com-
munications with EH is presented in [8]. Further, distortion
minimization for EH sensor nodes has been studied in several
works. In [9], the tradeoff between quantization and transmis-
sion energy in the presence of EH is analyzed, but the effect
of packet losses on the received data quality is not taken into
account. The problem of energy allocation between processing
and transmission is also studied in [10], in a model similar
to our own, but where, rather than minimizing the long-term
distortion, the authors aim at guaranteeing a minimum average
distortion while maintaining the data queue stable. In [11], the
authors study the achievable distortion when the energy buffer
may have some leakage and the transmitting devices jointly
perform source-channel coding in the presence of Gaussian
and binary sources.

The work closest to ours can be found in [12], where
a sensor node employs an on-line transmission policy that
maximizes the long-term average quality of the transmitted
packets. Specifically, the transmitter can decide the degree of
lossy compression and the transmission power, and the optimal
transmission strategy is obtained through the use of Markov
Decision Processes (MDPs). The framework employed in this
paper bears similarities to the one from [12], with the fol-
lowing important differences: (i) in addition to source coding,
we also consider channel coding, leveraging on the results
of finite-length information theory, (ii) we do not perform
power control, which requires Channel State Information (CSI)
at the transmitter and thus implies an additional cost or
overhead, and may be available only with a delay, and (iii) the
actual distortion at the receiver is influenced not only by the
source processing procedure, but also by the channel outage
probability.

The problem considered in the paper is solved through
decompositon into two nested optimization processes that
respectively address the rate-distortion tradeoff and the energy
management. A similar approach has been followed in [13],
where the goal is to guarantee energy self-sufficiency to a



multi-hop network by adapting the nodes’ duty cycle and
the information generation rate. Again, the framework is
modeled by means of an MDP; in fact MDPs are widely
used to address energy management policies, because they
represent an appealing solution to optimize some long-term
utilities in the presence of stochastic EH [14]. The nested
optimization allows us to determine an online optimal policy:
although solving an MDP may require some computational
time, the optimal solution can be precomputed and stored,
such that during its operation the node decides on its action
with a simple table look-up. We also note that the considered
framework is based on realistic models of the EH process
and of the distortion achievable by compressing environmental
signals with practical algorithms, including a thorough energy
consumption model.

The rest of the paper is organized as follows. The system
model and the problem formulation are described in Sections II
and III, respectively. The rate-distortion tradeoff is analyzed
in Section IV, whereas Section V studies the energy manage-
ment policy. Finally, we provide and discuss some exemplary
numerical results in Section VI and draw the conclusions in
Section VII.

II. SYSTEM MODEL

We consider an IoT device that generates packets periodi-
cally and communicates wirelessly with a data collector. Time
is divided into slots of predefined duration T . Each time the
device generates a packet, it has access to a slot reserved for
its transmission. In terms of the classification from [8], the
considered scenario can be categorized as an on-line energy
management with a reward maximization and with a perfect
knowledge of the state of the energy buffer, for a single device
case.

Fig. 1 shows the dynamics of the sensor node: some energy-
scavenging circuitry allows the device to harvest energy,
which is stored in a buffer and used for sensing, processing
and transmission operations. In the following, we thoroughly
describe all the components of such model.
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Figure 1: System model.

A. Data Processing and Transmission Model

The sensor node periodically senses the surrounding envi-
ronment. The packet arrival process follows a uniform distri-
bution: we assume that in each time slot the device collects
a constant number of readings for a total data size of L0 bits
per slot. In the following, we consider a typical slot when
defining quantities of interest; in general, we will introduce
subscripts referring to slots only when needed. The sensor

node may exploit source coding; in particular, we consider
lossy compression algorithms, and the resulting packet size
after compression is L(k) = k/mL0, where m ∈ N,
k ∈ {0, 1, . . . ,m}. The device decides upon k and thus on the
compression ratio k/m ∈ [0, 1]. Lossy compression reduces
the volume of bits of information to send, but at the cost of a
poorer accuracy in the signal’s representation, as it introduces
a distortion D(k) that depends on the compression ratio.

The slot duration T defines the maximum number of bits
that can fit into a slot, namely S = T/Tb, where Tb is the
(fixed) bit duration. Hence, when deciding upon the degree
of source compression k, the device also selects the coding
rate R(k) = L(k)/S at the same time. We assume that no
CSI is available at the transmitter, which, therefore, does
not perform power control and, whenever transmitting, uses
a constant transmission power Ptx. Depending on R(k) and
on the actual channel conditions, the packet may not be
correctly received with an outage probability Pout(k). Since
we consider a monitoring scenario where the traffic pattern is
reasonably known in advance, we assume that the slot duration
is allotted in such a way that the device can send all the
gathered information within the slot, thus L0 ≤ S.

Both the distortion function and the outage probability will
be characterized in Section IV.

B. Energy Harvesting Model

We assume that the device is capable of collecting energy
from the environment, and that this energy supply exhibits
time-correlation. Our approach follows the works based on
realistic data [15], [16] that assess the goodness of Markov
Chains (MCs) to model time-dependent sources.

The energy source dynamics are modeled by means of a
2-state MC, and the number en of energy quanta harvested in
slot n depends on the source state xn ∈ X = {0, 1}. Based
on the realistic model of [16], we assume that, when xn = 0,
the source is in a “bad” state and en = 0 with probability
1, otherwise, the source is in a “good” state and the energy
inflow follows a truncated discrete normal distribution, i.e.,
en ∼ N (µ, σ2) in the discrete interval {1, . . . E}.

We consider a harvest-store-use protocol: the energy scav-
enged in slot n is first stored in a battery of finite size B and
then used from slot n + 1 onwards. In slot n, the battery is
bn ∈ {0, . . . , B}, and evolves as follows:

bn+1 = min {bn + en − un, B} , (bn + en − un)
†
, (1)

where un ≥ 0 is the energy used in slot n. The energy
causality principle entails that:

un ≤ bn (2)

in all slots. We assume that the sensor node can reliably
estimate the status of its energy buffer.

C. Energy Consumption Model

We consider the following sources of energy consumption.
Data processing. To model the energy consumed by com-

pression, we leverage on the results of [17], where the authors



map the number of arithmetic operations required to process
the original signal into the corresponding energy demand:

EP (k) =

{
E0 L0NP (k) if 1 ≤ k ≤ m− 1

0 if k = 0,m
(3)

where E0 models the energy spent by the micro-controller
of the node in a clock cycle, and NP (k) is the number
of clock cycles required by the compression algorithm per
uncompressed bit of the input signal, which depends on the
compression ratio. If the packet is not compressed (k = m)
or discarded (k = 0), no energy is consumed.

Different compression algorithms entail different shapes of
NP (k). In particular, there are some techniques for which
function NP (k) is increasing and concave in k1, e.g., the
Lightweight Temporal Compression (LTC) and the Fourier-
based Low Pass Filter (DCT-LPF) algorithms. We consider
the LTC algorithm, whose corresponding energy consumption
turns out to be linear in the compression ratio: NP (k) =
αP

k
m + βP , k∈{1, . . . ,m− 1}, with αP , βP > 0 [17].

Data transmission. The energy needed to transmit a signal
with constant power Ptx for a time window of length T is:

ETX(k) =
Ptx T

ηA
· χ{k>0}, (4)

where ηA ∈ (0, 1] is a constant term that models the efficiency
of the power amplifier of the antenna. The indicator function
χ{k>0}, equal to 1 if k>0 and to zero otherwise, ensures that
no energy is consumed if the packet is discarded.

Other operations and circuitry costs. We define the cir-
cuitry energy consumption in a slot as:

EC(k) = βS + βC + (βE + EC T ) · χ{k>0}, (5)

where βS and βE , respectively, represent the constant sensing
and encoding costs, βC accounts for switching between the
node’s operating modes and the maintenance of synchroniza-
tion with the receiver, and the last term models the additional
energy cost incurred by a transmission, where EC is a circuitry
energy rate. We highlight that, typically, the energy demanded
by the channel encoding procedure is so small as to be
negligible.

The total energy consumption of the node is given by the
sum of the contributions of Eqs. (3)-(5):

Eused(k) = EP (k) + ETX(k) + EC(k), (6)

which depends solely on k.

III. PROBLEM FORMULATION

Our goal is to minimize the long-term average distortion of
the data transmitted by the sensor node while guaranteeing the
self-sufficiency of the network. The optimal distortion point is
selected according to a joint source-channel coding policy:
the node has to choose the number of bits per symbol to
transmit, which implies to decide both the degree of lossy
compression at the source and the error correction coding rate.

1Although this may appear as a counterintuitive result, it is due to practical
implementation details. We refer the reader to [17] for a detailed explanation.

The identification of such a working point is also driven by the
energy dynamics: the node is powered through EH, hence the
energy income is intermittent and erratic, and it is crucial to
design an intelligent scheme to manage the available energy.

To deal with the two aspects of distortion and energy, we
decided to split the problem into two intertwined subproblems.
• Rate-Distortion Problem (RDP): it focuses on the rate-

distortion issue, and assumes to have a given amount
of energy available to accomplish its goal. It will be
discussed in Section IV.

• Energy Management Problem (EMP): this module dy-
namically decides the energy to use in each slot with the
ultimate objective of ensuring long-term, uninterrupted
operation. The problem will be formulated and solved in
Section V.

The two subproblems are tightly coupled: RDP selects
the optimal operating point in the rate-distortion curve as a
function of the available energy, whereas EMP decides how
this energy varies depending on the battery state and the
statistical knowledge of the EH process. In this way, the node
is assured to be self-sufficient in an energetic sense, and, under
this operating condition, the long-term average distortion is
minimized. The combined problem is solved by means of an
MDP, as described in Section V.

Notice that the separability of RDP and EMP in the overall
optimization process leads to optimality because, once we
decide the energy to be spent from the energy buffer, we
greedily choose the action that minimizes the distortion and
the overall optimization is guaranteed by solving the MDP.

IV. RATE-DISTORTION ANALYSIS

In this section, we determine the optimal point in the rate-
distortion tradeoff when the available energy budget is given.
The actual distortion at the receiver is influenced by both
the lossy compression performed at the source and the errors
introduced by the channel. More specifically, we consider
the packet to be completely lost when in outage, which
corresponds to the maximum distortion level.

We first proceed to characterize the distortion due to source
coding and the outage probability as a function of the rate,
and then explain how to derive the solution of RDP.

A. Distortion due to compression

As described in Section II-A, in each slot the device can
compress its readings through a lossy compression algorithm,
thereby allowing to achieve a lower rate R(k), but introducing
a certain degree of distortion at the same time. In the literature,
there exist closed-form expressions for the rate-distortion
curves for idealized compression techniques operating on
Gaussian information sources, but for practical algorithms
such curves are generally obtained experimentally.

With the aim of modeling a more realistic scenario, we
leveraged on the work in [17] to derive a mathematical fitting
of rate-distortion curves that were obtained experimentally:

D(k) =

{
b
((

k
m

)−a − 1
)

if k > 0

Dfull if k = 0,
(7)



where b>0, 0< a<1, and Dfull is the maximum achievable
distortion, reached when the data is not even transmitted
(extreme case of compression ratio equal to 0). Notice that (7)
is a convex decreasing function of the compression ratio k/m.

B. Outage probability

We consider an erasure channel at the packet level, where
the erasure probability depends on the rate R(k) and the actual
channel conditions. The communication channel is affected by
both fading and Additive White Gaussian Noise (AWGN). We
assume a quasi-static scenario, hence the fading coefficient H
remains constant over the packet duration. The device does not
perform power control and the transmission power is fixed to
Ptx; the Signal-to-Noise Ratio (SNR) γ at the receiver is:

γ =
|H|2Ptx

(Ad)ηN
, |H|2 γ̄, (8)

where N is the noise power, and the term (Ad)η accounts for
path loss and depends on the path-loss exponent η, the distance
between transmitter and receiver d, and a path-loss coefficient
A = 4πf0/c, where f0 is the transmission frequency and c
the light speed.

When the channel is in a deep fade (i.e., |H| is small), the
packet is lost and a packet erasure (i.e., channel outage) occurs.
In IoT scenarios where packets are likely to be short, the
concepts of capacity and outage capacity of classic information
theory are no longer applicable. Recently, Polyansky, Poor
and Verdú [18] developed a finite-length information theory
that revisits the classical concepts of capacity when packets
have short size. In particular, they defined the maximum
coding rate R?(S, ε) as the largest coding rate L(k)/S for
which there exists an encoder/decoder pair of packet length
S whose error probability is not larger than ε. Although the
derivation of R?(S, ε) is an NP-hard problem, tight bounds
have been derived, and, for quasi-static channels, the following
approximation holds [19]:

R?(S, ε) = Cε +O
(

log2 S

S

)
, (9)

where Cε is the classical outage capacity for an error proba-
bility not larger than ε. This is a very useful result, because
it legitimates the use of the quantity log2(1 + γ) even in the
finite-length regime [19]. On the basis of these considerations,
we define the outage probability as:

Pout(k) = Pr ( log2 (1 + γ) < R(k)) . (10)

We assume the fading to follow a Rayleigh distribution,
i.e., the fading matrix H has i.i.d., zero-mean, unit-variance,
complex Gaussian entries, and therefore the outage probability
can be expressed as:

Pout(k) = 1− e−(2R(k)−1)/γ̄ , (11)

The outage probability is non-decreasing in R(k), and thus
in k, being initially convex and then concave. Notice that it
increases with the distance d from the receiver.

C. Optimal rate-distortion point

Given the amount of energy available u in the current slot,
the device must decide how many bits of information k to
transmit within a packet of fixed size S. This corresponds to
jointly selecting the source compression ratio and the coding
rate. The degree of compression employed affects the quality
of the information by introducing a source distortion that is
non-increasing in k, see Eq. (7). On the other hand, the outage
probability given in (11) is non-decreasing in k, and thus there
is a tradeoff between D(k) and Pout(k). The actual distortion
∆(k) experienced by a packet at the receiver side is equal to
D(k) if the packet has been delivered, which happens with
probability 1− Pout(k), and is equal to Dfull otherwise.

Based on the definition of ∆(k), we set up RDP as follows:

RDP: k? = min
k∈{0,...,m}

E[∆(k)] (12a)

subject to:

Eused(k) ≤ u (12b)

where the expected overall distortion at the receiver is:

E[∆(k)] = D(k) (1− Pout(k)) +Dfull Pout(k). (13)

The discrete nature of k makes it harder to solve RDP. We
thus introduce the continuous variable w ∈ [0,m] and then
map it into k ∈ {0, . . . ,m}. Also, we initially analyze the
energy and distortion aspects of the problem separately: we
determine a value k?E that solves the energy constraint (12b)
and a value k?R that solves RDP when Constraint (12b) is
neglected, and then we combine them to obtain k?.

We now focus solely on Constraint (12b). When u > 0,
since Eused(·) is non-decreasing in w ∈ [0,m−1], there exists
a point w?E(u) that minimizes the gap between the consumed
and the allocated energy, which either solves Constraint (12b)
with equality2, or is equal to m− 1. Then, we choose k?E(u)
as bw?E(u)c. Instead, if no energy is allocated (u = 0), then
k?E(u) = 0 and the packet is discarded. Finally, notice that
Eused(m) < Eused(k), k ∈ {1, . . . ,m−1} because no energy
is spent for the processing operations. We will see later how
to include this case in the solution of RDP.

We now discuss how to determine k?R, and present the
following key result.

Theorem 1. If L0 ≤ S, the expected overall distortion
E[∆(w)] has exactly one local minimum at w?R in the con-
tinuous interval [0,m].

Proof. See Appendix A.

There exists no closed-form for w?R (see the computation in
Appendix A); however, it is easy to numerically determine it
by means of dichotomic search over a restricted subinterval of
[0,m] and then derive its discrete counterpart k?R accordingly.
We refer the reader to Appendix B for details.

2If EP (w) is not strictly increasing in w, multiple rates may satisfy
Constraint (12b) with equality. In this case, we select the maximum of these
values.



Based on these observations, the optimal k?(u) is given by:

k?(u) =

{
min{k?R, k?E(u)} if k?R < m

m · χ{Eused(m)≤u} if k?R = m
(14)

Intuitively, the energy constraint (12b) does not allow to
choose any k>k?E(u). Anyway, it is not efficient to use any
k > k?R even if possible, because it would lead to a worse
expected distortion. When the joint source-channel coding
optimization leads to k?R=m, the packet is sent without being
compressed, given that there is enough energy to perform the
transmission. Notice that, because of how k?(u) is defined,
the expected distortion at the receiver E[∆(k?(u))] is a non-
increasing and convex function of u; see Appendix A for
details about convexity.

V. ENERGY MANAGEMENT

Through Eq. (14), RDP dictates the optimal coding rate
R?(un) , L(k?(un))/m when the energy un available in slot
n is given. The allocation of un is influenced by the dynamics
of the energy inflow and by the battery state, which have been
characterized in Section II-B. In this section, we formulate
the distortion-energy problem as an MDP, which is solved by
means of the well-known Value-Iteration Algorithm (VIA).

A. Formulation of the Markov Decision Process

We model the problem as an MDP defined by the tuple
(S, U , P, c(·)), with the components described as follows.
• S , X × B is the system state space, where X =
{0, 1} denotes the set of energy source states, and B =
{0, . . . , B} represents the set of energy buffer states.

• U is the action set. In each slot, the device observes
the current system state sn and chooses the amount of
energy un ∈ U to use. This decision influences the joint
source-channel coding scheme to adopt, as dictated by
RDP through Eq. (14). The set of admissible actions in
state s ∈ S is Us ⊆ U . According to Eq. (2), the usable
energy is constrained by the present charge of the battery,
thus Usn = {0, . . . , bn}.

• P represents the transition probabilities that govern the
system dynamics. In particular, the probability of going
from state sn = (xn, bn) to sn+1 = (xn+1, bn+1) when
the action taken is un is given by:

Pr(sn+1|sn, un) = pe(en|xn) · px(xn+1|xn)

· δ
(
bn+1 − (bn + en − un)

†
) (15)

where px(xn+1|xn) is obtained from the transition prob-
ability matrix of the MC that models the source state,
pe(en|xn) is the mass distribution function of the energy
inflow in state xn (see Section II-B), and δ(·) is equal
to one if the argument is zero, and zero otherwise. This
last term is needed to ensure that the transitions between
states are consistent with the dynamics of the battery state
as determined by both the energy harvesting process and
the transmission decisions.

• Finally, c(·) is the cost function. Because our goal is to
minimize the distortion that affects the received packet,
the cost in slot n is a positive quantity defined as:

c(sn, un) = E[∆(k?(un))], (16)

where k?(un) is the result of the optimization of RDP.
Notice that, apparently, the cost depends solely on the
chosen action and not on the current state sn = (xn, bn).
However, the action must be selected in set Usn , which
does depend on the present battery status bn.

We aim at identifying a policy π, i.e., a sequence of decision
rules that map the system state into the action to take. As
discussed in Section III, the goal is to minimize the long-term
average distortion, i.e., the long-term average cost:

Jπ = lim
N→+∞

1

N
Es

[
N−1∑
n=0

c(sn, un)

]
, (17)

which depends on the chosen admissible policy π (that decides
upon the action u). In general, it also depends on the initial
state s0, but the MDP we defined has a unichain structure and
bounded costs, thus the asymptotic behavior is independent of
the initial state and it is sufficient to consider only Markov
policies [20], i.e., those for which the decision rule depends
only on the current state sn and not on time n.

The goal of EMP is to determine J? = minπ∈Φ Jπ and the
corresponding optimal policy π? = argminπ∈Φ Jπ , where Φ
denotes the set of all stationary Markov policies.

B. Solution of EMP

J? can be proved to satisfy Bellman’s optimality equa-
tion [21], and thus our MDP can be solved, e.g., through the
Relative Value-Iteration Algorithm (RVIA), a version of the
VIA used for infinite-horizon average cost MDPs [21]. RVIA
defines two functions J and Q that are iteratively updated
starting from an initial estimate J0(·), e.g., J0(s) = 0 ∀s∈S .
In particular, the i-th iteration determines:

Qi(s, u) = c(s, u) +
∑
s′∈S

Pr(s′|s, u) Ji−1(s′) (18)

Ji(s) = min
u∈Us

Qi(s, u), (19)

In (18), the immediate cost c(s, u) obtained in the current
state s is summed with the expected optimal cost obtained
from the next slot onwards, weighed according to the system
dynamics. The convergence criterion is given by the span
seminorm operator sp(j) , max(j) − min(j) computed for
j = Ji+1(s)−Ji(s); the span seminorm guarantees that (19) is
a contraction mapping, and thus the RVIA algorithm is assured
to converge (for details about convergence, we refer the reader
to [21]). We stop the iterative algorithm when sp(·) ≤ ε, for
a chosen tolerance threshold ε. The optimal policy π? is then
determined by computing the optimal action to follow in each
state s ∈ S , i.e., u?(s) = argminu∈Us Qn(s, u), where n is
the last iteration of RVIA, and has the following key property.

Theorem 2. The optimal policy is non-decreasing in the
energy buffer state b.
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Figure 2: C?π vs µ for different values of B (d = 100 m).
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Proof. See Appendix C.

By taking into account the discrete nature of the system
state, we have that the optimal policy has a threshold structure,
which is an appealing property for storage and implementation
on resource constrained nodes.

When the optimal policy is identified, the MDP turns into
a MC, and the average long-term cost induced by π? is:

C?π =
∑
s∈S

ρs c(s, u
?(s)) (20)

where ρs is the steady state probability of state s induced
by the optimal policy, and c(s, u?(s)) is the immediate cost
obtained by following π? in state s.

Note on computational complexity: We highlight that,
although the determination of the optimal policy requires to
solve the MDP, the RVIA algorithm does not need to be com-
puted at runtime. As discussed, e.g, in [13], [22], the policy can
be obtained offline and not necessarily by the sensor nodes,
which will just need to store tables containing the association
between system state and optimal action. Therefore, the policy
execution simply consists in a look-up operation.

VI. NUMERICAL EVALUATION

To validate the analytical results, we evaluated the perfor-
mance of the optimal policy by investigating the effect of some

parameters and through comparison with two heuristics.
Concerning the processing aspects, we set L0 = S, a =

0.69, b = 3.27, and m = 20. The channel gain is computed
using the standard path loss model with a path loss exponent
equal to 3.5 and a central frequency of 868.3 MHz. The
bandwidth is W = 125 kHz, and the overall noise power is
−167 dBm/Hz. For the energy aspect, the probability that the
source goes from the bad to the good state is 3 times greater
than that of the opposite transition. We set the variance of the
normal distributed energy arrivals in the “good” state σ2 = 3,
whereas the mean µ will be specified for each result, and the
maximum number of quanta that can be harvested in a slot is
E = µ/0.65.

We introduce the following useful quantities: emax is the
maximum energy consumption demanded by the processing
and transmission of a packet, µ = µ/emax, and B = B/emax.
We remark that, according to (6), a packet cannot be sent if
the available energy is below a certain threshold emin; in the
simulations, we have emin > emax/2.

Fig. 2 shows the average long-term cost C?π as a function
of µ for different values of B, when the distance is fixed to
100 m. Clearly, the more the energy that can be harvested,
the better the performance. It is interesting to note that, as
long as it is sufficiently large, the battery size has only a
minor impact on the average cost: when it is large enough to
allow reaching k?R in most of the time slots, it is not worth to
increase B anymore, because the exceeding energy is not used.
Notice that, after a certain value of µ (which depends on the
other parameters), the average cost tends to stabilize around
a specific configuration-dependent value. The reason behind it
is twofold: (i) the distortion associated to k?R is never zero,
unless the outage probability is negligible even for k = m 3,
and (ii) a minimum amount of energy is needed to transmit a
packet and therefore, for all system states where the battery
is b < emin, the cost is 0, and this has an impact on C?,see
Eq. (20).

Fig. 3 evaluates the performance of the optimal policy
against the distance from the receiver for different values of the
battery size when µ = 1. As d increases, the channel becomes
worse and the higher outage probability has a negative impact
on the achievable distortion at the receiver. Again, the role of
B is less relevant.

A. Comparison with heuristics

We also compare the performance of the optimal policy
(OP) against that of the two following heuristic policies.
• Greedy policy (GP): the future sustainability of the node

does not influence the energy to use in each slot, which
is chosen as un = min(bn, u

?), with u? being the energy
needed to achieve k?R. Basically, GP only solves RDP and
does not optimize the energy utilization.

• Dumb processing policy (DP): it does not determine the
optimal point in the rate-distortion tradeoff and only
considers the distortion introduced at the source, without
accounting for the outage probability. EMP is unvaried.

3We discarded this scenario, as it is not interesting. For k < m, it is always
∆(·) ≥ D(·) > 0.
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Figure 5: Example of battery temporal evolution (B = 2).

Fig. 4 compares the performance of the optimal and heuris-
tic policies against the average energy income during the good
state of the energy source. The normalized battery size is
B = 1.5 and the distance from the receiver is d = 80 m.
As expected, the optimal policy outperforms both heuristic
policies. However, DP achieves almost optimal performance
with this configuration: this is explained by the fact that
the source distortion flattens as k increases (see (7)), thus
the gain brought by OP for considering the negative impact
of the outage probability is less significant than that of the
intelligent energy management process4. In fact GP, that makes
an aggressive use of the available energy, leads to the worst
performance. When the average energy income µ is high, all
policies achieve good performance, because there is almost
always enough energy to guarantee low distortion.

In Fig. 5, we plot a realization of the system temporal
evolution during the first 500 time slots, when d = 80 m

4Accordingly, if the outage were higher, the gap between DP and OP would
increase.

c1 c2 c3 c4
bmae1/γ 1/γ L0/(mS) e1/γ(b+Dfull)

d1 d2 d3 d4
a c1 c1c2c3 ln(2) c2c3c4 ln(2) e1/γc2c3 ln(2)

Table I: Coefficients c1, c2, c3, c4, d1, d2, d3.

and starting with full battery (B = 2). The last graph shows
the dynamics of the energy source, while the first three plots
show the evolution of the energy buffer for OP, GP and DP,
respectively. GP drains out the battery too fast, thus the battery
is generally empty when xn = 0; this never happens with
OP and DP, which leverage on the knowledge of the EH
statistics to use the energy wisely. Interestingly, the excursion
experienced by bn is lower with DP than with OP: DP tends to
use more energy than OP when available, because it neglects
the negative impact of the outage probability for large values
of k, and in this way it does not allow the buffer to accumulate
energy that may be very useful in the next slots.

VII. CONCLUSIONS

This work investigates the tradeoff between energy effi-
ciency and signal distortion at the receiver. We decomposed
the problem into two nested optimization steps, endowing
our framework with more flexibility. The outer problem is
structured as an MDP, that allows to derive an optimal energy
management policy; the inner problem jointly optimizes the
source-channel coding processing to ensure that the quality
of the received information is maximized. The numerical
evaluation corroborates the analytical results and shows that
our policy outperforms simpler heuristics.

Future work includes the use of machine learning techniques
in order to more accurately model the EH process and the
extension to a sensor network where packet re-transmissions
are allowed, thereby introducing a new tradeoff between
signal distortion and transmission latency. We also would
like to tackle more general cases, e.g., consider compression
algorithms that behave differently from LTC in terms of energy
consumption, and include practical sensor limitations, e.g.,
imprecisions in the energy buffer readings.
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APPENDIX A
PROOF OF THEOREM 1

By substituting D(·) and Pout(·) in Eq. (12a) as given in
Eqs. (7) and (11), respectively, the expected distortion for w ∈
[1,m] is expressed as:

E[∆(w)] = b

((w
m

)−a
− 1

)
e−

2(wL0)/(mS)−1
γ

+ Dfull

(
1− e−

2(wL0)/(mS)−1
γ

)
≤ Dfull,

(21)



whereas it is equal to Dfull for w = 0. By introducing the
positive coefficients c1, c2, c3, c4 (given in Table I), Eq. (21)
can be rewritten as:

E[∆(w)] = c1 w
−a e−c2 2w c3 − c4 e−c2 2w c3 +Dfull, (22)

and its derivative with respect to w is:

∂

∂w
E[∆(w)] = −e−c22wc3

(
d1w

−a−1+d2w
−a2wc3−d32wc3

)
, −e−c2 2w c3 f(w),

(23)

with positive coefficients d1, d2, d3 detailed in Table I. The
critical points of E[∆(w)] correspond to the zeros of f(w).
However, it is not possible to write a closed-form solution for
f(w) = 0, but a numerical approach needs to be pursued.

Actually, the shape of f(w) highly depends on coefficients
d1, d2, d3, and thus on the system parameters. Anyway, we
show that, if L0 ≤ S, f(w) has at most one root in the
continuous interval [1,m], and thus function E[∆(w)] admits
a unique point of minimum w?R (which may coincide with one
of the extreme values of w).

We temporarily focus only on the last two addends of
f(w) and define g(w) , (d2 w

−a − d3) 2w c3 . By expanding
coefficients d2 and d3, we obtain:

g(w) = d4

(
b
(m
w

)a
− (b+Dfull)

)
2w c3 , (24)

with d4 defined in Table I. The derivative is:
∂

∂w
g(w) = d4 2w c3

(
− a bma w−a−1+

+ b
(m
w

)a
ln(2)c3 − b ln(2)c3 −Dfull ln(2)c3

) (25)

The last addend of the second factor is certainly negative,
and the sum of the first three addends is equal to:

b
(m
w

)a (
− a
w

+ ln(2)c3

(
1−

(w
m

)a))
≤

≤ b
(m
w

)a(
− a
w

+
1

m

(
1−

(w
m

)a))
, b

ma

wa
h(w)

(26)

where the first inequality comes from the assumption L0 ≤ S,
that implies c3 ≤ 1/m. Notice that both h(0) and h(m)
are negative, and h′(w) is positive, i.e., function h(·) is a
monotonic increasing negative function of w ∈ [0, 1]. It
follows that, for w ≤ m, g(w) is always decreasing in w.
Moreover, it is certainly positive for w → 0+ and negative
for w = m. This means that g(w) has exactly one point of
minimum wg = (b/(b + Dfull))

1/a in the continuous range
[0,m]. However, if wg < 1, then g(w) is always negative in
the interval we are interested in (i.e., w ∈ [1,m]).

Based on this observations and on the fact that d1 w
−a−1

is positive, convex and decreasing in w, we obtain that f(w)
is decreasing in w. Depending on the values of d1, d2, d3, it
is then possible to pinpoint three distinct cases.

1) f(w) is always positive, and thus E[∆(w)] is always
increasing in w, which entails that choosing w?R = 1
is optimal. This happens when coefficient d1 is very
high and thus the first addend of f(w) always dominates
g(w), i.e., when the outage probability is overwhelming.
We deem this case not to be of practical interest.

2) In contrast to the previous case, it may happen that f(w)
is always negative, i.e., E[∆(w)] always decreases with
w. This situation is met when the distortion function
prevails over the outage probability, which remains low
even for high rates because the channel is very good on
average. The solution in this case is w?R = m, i.e., the
best strategy consists in not compressing at all.

3) Otherwise, f(w) is decreasing in w and has a unique
zero, which corresponds to a unique value w?R. Using
a source compression ratio lower than w?R/m would
generate a higher E[∆(·)] because of the larger dis-
tortion introduced with the source coding, whereas a
compression ratio larger than w?R/m would weaken the
goodness of the channel coding and lead to a higher
outage probability.

In practice, under the only assumption of L0 ≤ S, there
always exists a unique point w?R that minimizes the expected
distortion at the receiver: E[∆(w)] is decreasing until w?R and
increasing afterwards.

A note on convexity. E[∆(w)] is convex for w ≤ w?R. In
fact, the computation of the second derivative of (21) leads to:

∂2

∂w2
E[∆(w)] = c2c3 ln(2)2wc3e−c22w c3 f(w)+

− c2e−c22w c3 ∂

∂w
f(w)

(27)

which is always positive for w ≤ w?R, since f(w) is positive
and its derivative −(a + 1)d1w

−a−2 + ∂
∂wg(w) is always

negative.

APPENDIX B
ON THE DETERMINATION OF k?R

The computation in Appendix A shows that w?R cannot be
expressed with a closed-form. So, in the worst case E[∆(k)]
should be calculated for all the m possible values of k.
However, it is still possible to determine k?R with the following
procedure, that reduces the computational time. First of all,
we compute the value of Eq. (21) for the two extreme values
k ∈ {1,m}. If both f(1) and f(m) are positive, then we fall
in case 1) of Appendix A and k?R = 1; similarly, if they are
both negative, case 2) holds and k?R = m. If f(1) > 0 and
f(m) < 0, case 3), holds and w?R can be found by means
of binary search over the continuous subinterval [wg,m− 1].
Then k?R is one of the two closest integers to w?R, according
to which one yields the lowest expected distortion.

APPENDIX C
PROOF OF THEOREM 2

Thanks to Topkis’ monotonicity theorem [23], to prove that
u?(s) = argminu∈Us Q((x, b), u) is non-decreasing in b, it is
sufficient to prove that function Q((x, b), u) is submodular in
(b, u), i.e., that the difference Q((x, b), u′)−Q((x, b), u) with
u′ ≥ u does not increase as b increases:

Q((x, b′), u′)−Q((x, b′), u) ≤ Q((x, b), u′)−Q((x, b), u)
(28)

for b′ ≥ b. The submodularity property is preserved under non-
negative linear combination, thus we separately demonstrate



the submodularity of c(s, u) and J(s) in the pair (b, u). In
fact, from Eq. (19), we have that Q((x, b), u) = c((x, b), u) +∑
x′∈X

∑E
e=0 px(x′|x)pe(e|x) J((x′, b+ e− u)).

For what concerns the single-stage cost c((x, b), u), we have
seen in Section IV-C that it is convex and non-increasing in u,
and depends on b only through the set of admissible actions
U(x,b). Since U(x,b) ⊆ U(x,b′) if b ≤ b′, it is c((x, b), u) <
c((x, b′), u) for b < u ≤ b′, and c((x, b), u) = c((x, b′), u)
in all other cases. It follows that the quantity c((x, b′), u) −
c((x, b), u) does not increase as u increases, i.e., the single-
stage cost is submodular in (b, u).

We now proceed with the characterization of the term
J((x, b)). We assume it to be convex in the energy buffer
state b; the validity of this property is proven in Lemma 1
below. Convexity means that:

J((x, b1)) + J((x, b2)) ≥ J((x, λb1 + (1− λ)b2))+

+ J((x, (1− λ)b1 + λb2))
(29)

for any λ ∈ [0, 1], b1, b2, x. By choosing b1 = b + e − u′,
b2 = b′+e−u, and λ = (u′−u)/(u′−u+b′−b) with b′ ≥ b
and u′ ≥ u, and by rearranging the terms, we obtain:

J((x, b′ + e−u′))− J((x, b′ + e− u)) ≤
J((x, b+ e− u′))− J((x, b+ e− u)),

(30)

which proves the submodularity of J(x, b) in (b, u).
Summing up, by exploiting the submodularity of function

Q((x, b), u) and the convexity of J((x, b)) with respect to b,
we have proved that the optimal policy π?(s) is non-decreasing
in the buffer state b.

Lemma 1. J(s) is convex in the energy buffer state b.

Proof. We proceed by induction on the i-th iteration of RVIA
(see Eq. (19)).

The basis is straightforward: since the initial value
J0((x, b)) does not affect the convergence of the algorithm,
we simply choose it convex in b (e.g., J0((x, b)) = 0 ∀s ∈ S
is a valid choice).

For the inductive step, we assume Ji−1((x, b)) to be convex
in b. In the proof of Theorem 2 we have shown that Q(s, u)
is submodular in b if J((x, b)) is convex in b, i.e.:

Qi((x, b), u
′)−Qi((x, b− c), u′) ≤

Qi((x, b), u)−Qi((x, b− c), u),
(31)

for b′ ≥ b, u′ ≥ u. Function Qi((x, b), u) is convex in b,
because it is the nonnegative weighted sum of c((x, b), u) and
Ji−1((x, b)), that are both convex in b. Thus:

Qi((x, b), u)−Qi((x, b− c), u) ≤
Qi((x, b+ c), u)−Qi((x, b), u),

(32)

which, combined with (31), gives:

Qi((x, b), u
′)−Qi((x, b− c), u′) ≤

Qi((x, b+ c), u)−Qi((x, b), u),
(33)

Qi((x, b, u)−Qi((x, b− c), u′) ≤
Qi((x, b+ c), u)−Qi((x, b), u′).

(34)

By choosing u = u′ = argminuQi((x, b), u), we obtain:

Ji((x, b+ c))− Ji((x, b)) ≥ Ji((x, b))− Ji((x, b− c)), (35)

i.e., Ji(s) is convex in b and the inductive step is proved.
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