Frameless ALOHA with latency-reliability guarantees

March 17, 2017

F. Lázaro *, Čedomir Stefanović †, Petar Popovski †

Institute of Communications and Navigation German Aerospace Center (DLR)

> [†] Department of Electronic Systems Aalborg University

Introduction

Frameless ALOHA

Finite Length Analysis

Latency-Reliability Guarantees

Conclusions

Introduction

- Frameless ALOHA
- Finite Length Analysis
- Latency-Reliability Guarantees
- Conclusions

 random access (RA) protocols are effective when the nature of the traffic is unpredictable and/or when the number of active devices is dynamic and the total population very large

- random access (RA) protocols are effective when the nature of the traffic is unpredictable and/or when the number of active devices is dynamic and the total population very large
- ► the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted ALOHA [Rob-75], which have been adopted in many standards (GSM, UMTS, DVB-RCS2, ...), typically for control channels only. Issues:

- random access (RA) protocols are effective when the nature of the traffic is unpredictable and/or when the number of active devices is dynamic and the total population very large
- ► the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted ALOHA [Rob-75], which have been adopted in many standards (GSM, UMTS, DVB-RCS2, ...), typically for control channels only. Issues:

- [Abr-70] N. Abramson "The ALOHA system: Another alternative for computer communications", in Proc. of the 1970 Fall Joint Comput. Conf. (AFIPS)
- [Rob-75] L.G. Roberts "ALOHA Packet System with and without Slots and Capture", in Proc. SIGCOMM Comput. Commun. Rev., ACM, 1975

- random access (RA) protocols are effective when the nature of the traffic is unpredictable and/or when the number of active devices is dynamic and the total population very large
- ► the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted ALOHA [Rob-75], which have been adopted in many standards (GSM, UMTS, DVB-RCS2, ...), typically for control channels only. Issues:
 - ▶ low peak throughput (1/(2e) and 1/e respectively)

- [Abr-70] N. Abramson "The ALOHA system: Another alternative for computer communications", in Proc. of the 1970 Fall Joint Comput. Conf. (AFIPS)
- [Rob-75] L.G. Roberts "ALOHA Packet System with and without Slots and Capture", in Proc. SIGCOMM Comput. Commun. Rev., ACM, 1975

- random access (RA) protocols are effective when the nature of the traffic is unpredictable and/or when the number of active devices is dynamic and the total population very large
- ► the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted ALOHA [Rob-75], which have been adopted in many standards (GSM, UMTS, DVB-RCS2, ...), typically for control channels only. Issues:
 - ▶ low peak throughput (1/(2e) and 1/e respectively)
 - high packet loss rate even for low load
 - [Abr-70] N. Abramson "The ALOHA system: Another alternative for computer communications", in Proc. of the 1970 Fall Joint Comput. Conf. (AFIPS)
 - [Rob-75] L.G. Roberts "ALOHA Packet System with and without Slots and Capture", in Proc. SIGCOMM Comput. Commun. Rev., ACM, 1975

Advanced Random Access protocols

 recently it has been shown that much higher efficiency can be obtained by introducing time diversity (replication) and successive interference cancellation (SIC) at the receiver

Advanced Random Access protocols

- recently it has been shown that much higher efficiency can be obtained by introducing time diversity (replication) and successive interference cancellation (SIC) at the receiver
- ► examples:

Advanced Random Access protocols

- recently it has been shown that much higher efficiency can be obtained by introducing time diversity (replication) and successive interference cancellation (SIC) at the receiver
- ► examples:
 - CRDSA [Cas-07]
 - IRSA [Liva-11]
 - [Cas-07] E. Casini, R. De Gaudenzi, and O. del Rio Herrero, "Contention Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Scheme for Satellite Access Packet Networks", IEEE Trans. on Wireless Commun., vol. 6, no. 4, pp. 1408-1419, April 2007
 - [Liva-11] G. Liva, "Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted ALOHA", IEEE Trans. Commun., vol. 59, no. 2, pp. 477-487, Feb. 2011

Introduction

Frameless ALOHA

Finite Length Analysis

Latency-Reliability Guarantees

Conclusions

 Frameless ALOHA is a slotted RA protocol that exploits ideas originating from the rateless coding framework:

- Frameless ALOHA is a slotted RA protocol that exploits ideas originating from the rateless coding framework:
 - the length of the contention period is not fixed a priori

- Frameless ALOHA is a slotted RA protocol that exploits ideas originating from the rateless coding framework:
 - the length of the contention period is not fixed a priori
 - every user is active (sends a packet) in a slot with probability p

- Frameless ALOHA is a slotted RA protocol that exploits ideas originating from the rateless coding framework:
 - the length of the contention period is not fixed a priori
 - every user is active (sends a packet) in a slot with probability p

n users

$$p = \frac{\beta}{n}$$

contention starts

User 1	 	 	 	
User 2				
User 3	, , , , ,			

slot 1 User 1 User 2 User 3

slot 2

slot 3

slot 4

slot 4

decoding starts

slot 4

decoding continues

slot 4

decoding continues

slot 4

decoding continues

slot 4

since all users are recovered we can terminate the contention after 5 slots

Introduction

Frameless ALOHA

Finite Length Analysis

Latency-Reliability Guarantees

Conclusions

Definition (Ripple)

We define the ripple as the set of singleton slots (reduced degree 1) and we denote it by \mathscr{R} .

the cardinality of the ripple is denoted by ${\tt r}$ and its associated random variable as R.

Definition (Cloud)

We define the cloud as the set of slots with reduced degree d \geq 2 and we denote it by $\mathscr{C}.$

the cardinality of the cloud is denoted by $_{\rm C}$ and the corresponding random variable as $_{\rm C}.$

Finite Length Analysis Bipartite Graph Representation

Finite Length Analysis Bipartite Graph Representation

$$\Omega_i = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$\Omega_i = \binom{n}{i} p^i (1-p)^{n-i}.$$

in the collision channel, the iterative SIC process can be seen as an iterative pruning of the bipartite graph.

$$\Omega_i = \binom{n}{i} p^i (1-p)^{n-i}.$$

- in the collision channel, the iterative SIC process can be seen as an iterative pruning of the bipartite graph.
 - ▶ intially all *n* users are unresolved

$$\Omega_i = \binom{n}{i} p^i (1-p)^{n-i}.$$

- in the collision channel, the iterative SIC process can be seen as an iterative pruning of the bipartite graph.
 - ▶ intially all *n* users are unresolved
 - at every iteration:

$$\Omega_i = \binom{n}{i} p^i (1-p)^{n-i}.$$

- in the collision channel, the iterative SIC process can be seen as an iterative pruning of the bipartite graph.
 - ▶ intially all *n* users are unresolved
 - at every iteration:
 - $\blacktriangleright\,$ if there are singleton slots \rightarrow one user is resolved
 - if there are no singleton slots decoding stops

the iterative SIC process can be modelled by means of a finite state machine with state:

 $S_{\mathit{U}} := (C_{\mathit{U}}, R_{\mathit{U}})$

the iterative SIC process can be modelled by means of a finite state machine with state:

 $S_u := (C_u, R_u)$

► C_u: cardinality of cloud when u users are unresolved

the iterative SIC process can be modelled by means of a finite state machine with state:

$$S_u := (C_u, R_u)$$

- ► C_u: cardinality of cloud when u users are unresolved
- ► R_u: cardinality of ripple when u users are unresolved

Finite Length Analysis Transition from u to u - 1 resolved users

Finite Length Analysis Transition from u to u - 1 resolved users

▶ b_u : the number of slots leaving C_u and entering \Re_{u-1}

$$\mathbf{b}_u := \mathbf{c}_u - \mathbf{c}_{u-1}$$

► **B**_u: associated random variable

Finite Length Analysis Transition from u to u - 1 resolved users

- a_u : the number of slots leaving the ripple \mathscr{R}_u in the transition
- ► A_u: r.v. associated to a_u

Finite Length Analysis

Theorem

Given that the decoder is at state $s_u = (c_u, r_u)$, when u users are unresolved and with $r_u > 0$, the probability of the decoder being at state $Pr\{s_{u-1} = (c_{u-1}, r_{u-1})\}$ when u - 1 users are unresolved is given by

$$\Pr\{\mathbf{S}_{u-1} = (\mathbf{c}_u - \mathbf{b}_u, \mathbf{r}_u - \mathbf{a}_u + \mathbf{b}_u) | \mathbf{S}_u = (\mathbf{c}_u, \mathbf{r}_u) \} = \begin{pmatrix} \mathbf{c}_u \\ \mathbf{b}_u \end{pmatrix} q_u^{\mathbf{b}_u} (1 - q_u)^{\mathbf{c}_u - \mathbf{b}_u} \begin{pmatrix} \mathbf{r}_u - 1 \\ \mathbf{a}_u - 1 \end{pmatrix} \times \left(\frac{1}{u}\right)^{\mathbf{a}_u - 1} \left(1 - \frac{1}{u}\right)^{\mathbf{r}_u - \mathbf{a}_u}$$

for $0 \leq \texttt{b}_u \leq \texttt{c}_u, \texttt{b}_u - \texttt{a}_u \leq \texttt{r}_u$ and $\texttt{a}_u \geq 1,$ and with

$$q_{u} = \frac{\sum_{d=2}^{n-u-2} \Omega_{d} d(d-1) \frac{1}{n} \frac{u-1}{n-1} \frac{\binom{n-u}{d-2}}{\binom{n-2}{d-2}}}{1 - \sum_{d=1}^{n-u-1} \Omega_{d} u \frac{\binom{n-u}{d-1}}{\binom{n}{d}} - \sum_{d=0}^{n-u} \Omega_{d} \frac{\binom{n-u}{d}}{\binom{n}{d}}}.$$

Finite Length Analysis

In practice one is interested in the packet error rate Pe

$$\mathsf{P}_{\mathsf{e}} = \sum_{u=1}^{n} \sum_{c_u} \frac{u}{n} \operatorname{\mathsf{Pr}}\{\mathsf{S}_u = (c_u, 0)\}.$$

13

Finite Length Analysis

In practice one is interested in the packet error rate Pe

$$\mathsf{P}_{\mathsf{e}} = \sum_{u=1}^{n} \sum_{c_u} \frac{u}{n} \operatorname{\mathsf{Pr}}\{\mathsf{S}_u = (c_u, 0)\}.$$

The throughput T is the number of resolved users normalized by the number of slots:

$$\mathsf{T} = \frac{n(1 - \mathsf{P}_{\mathsf{e}})}{m} = \frac{1 - \mathsf{P}_{\mathsf{e}}}{m/n}$$

Finite Length Analysis Throughput for $\beta = 2.5$, for n = 100

14

Finite Length Analysis PER for $\beta = 2.5$, for n = 100

Introduction

Frameless ALOHA

Finite Length Analysis

Latency-Reliability Guarantees

Conclusions

the analysis provides not only the PER but it can provide the exact probability that k users are undecoded after m slots

- ► the analysis provides not only the PER but it can provide the exact probability that *k* users are undecoded after *m* slots
 - ► it provides a latency-reliability guarantee

- ► the analysis provides not only the PER but it can provide the exact probability that *k* users are undecoded after *m* slots
 - ► it provides a latency-reliability guarantee
 - in some applications one wants to decode at least k out of n with a very high probability (for example, vehicular networks or industrial automation)

- ► the analysis provides not only the PER but it can provide the exact probability that *k* users are undecoded after *m* slots
 - ► it provides a latency-reliability guarantee
 - in some applications one wants to decode at least k out of n with a very high probability (for example, vehicular networks or industrial automation)
 - Example: n = 50 users, m = 100 slots

► the analysis can be used to optimize the performance of frameless Aloha

- HEN CROTHEN TO
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization

- THORE UNIVERSIT
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots

- July MEN CAOLING
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario

- THORE UNIVERSIT
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario
 - number of users: n = 50

- THORE UNIVERT
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario
 - number of users: n = 50
 - reliability target: k = n = 50

- Transe universit
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario
 - number of users: n = 50
 - reliability target: k = n = 50
 - latency target (in slots): 100

- Those UNIVERNAL
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario
 - number of users: n = 50
 - reliability target: k = n = 50
 - latency target (in slots): 100
- ► in this scenario the optimal parameter is $\beta = 3.33$, which leads to $P_k = 0.9334$

- THORE UNIVERNIT
- ► the analysis can be used to optimize the performance of frameless Aloha
- we can perform the following optimization
 - maximize P_k the probability that at least k users out of n are decoded after a contention of m slots
- ► in this presentation we shall focus on the following scenario
 - number of users: n = 50
 - reliability target: k = n = 50
 - latency target (in slots): 100
- ► in this scenario the optimal parameter is $\beta = 3.33$, which leads to $P_k = 0.9334$
- ► this value of *P_k* might be too high for many applications

► How can we improve the performance?

18

- ► How can we improve the performance?
- we can have different classes of slots

- ► How can we improve the performance?
- we can have different classes of slots
 - m_1 slots with β_1

- ► How can we improve the performance?
- we can have different classes of slots
 - m_1 slots with β_1
 - m_2 slots with β_2

- ► How can we improve the performance?
- we can have different classes of slots
 - m_1 slots with β_1
 - m_2 slots with β_2
 - ▶ ...
 - m_h slots with β_h

- ► How can we improve the performance?
- we can have different classes of slots
 - m_1 slots with β_1
 - m_2 slots with β_2
 - ▶ ...
 - m_h slots with β_h
- the analysis needs to be modified
 - the iterative SIC process is modelled by means of a finite state machine with state:

$$S_u := (C_u^{(1)}, C_u^{(2)}, \dots, C_u^{(h)}, R_u)$$

- $C_u^{(i)}$: cardinality of *i*-th cloud when *u* users are unresolved (number of slots of type *i* with reduced degree 2 or larger)
- \blacktriangleright R_u: cardinality of ripple when u users are unresolved

Latency-Reliability Guarantees Optimization - Results

how much can we improve the performance?

19

Tope UNIVER 19

► how much can we improve the performance?

slot classes	P_k	parameters
1	0.9334	$\beta = 3.33, m = 100$
2	0.9986	$\beta_1 = 2.53, m_1 = 86$ $\beta_2 = 22.08, m_2 = 14$
3	0.99917	$\beta_2 = 22.00, m_2 = 14$ $\beta_1 = 2.51, m_1 = 88$
		$\beta_2 = 17.39, m_2 = 11$
		$\beta_3 = 50, m_3 = 1$
dynamical	0.9999975	dynamical

Transe watter

how much can we improve the performance?

slot classes	P_k	parameters
1	0.9334	$\beta = 3.33, m = 100$
2	0.9986	$\beta_1 = 2.53, m_1 = 86$
		$\beta_2 = 22.08, M_2 = 14$ $\beta_4 = 2.51, m_4 = 88$
3	0.99917	$\beta_1 = 2.31, m_1 = 00$ $\beta_2 = 17.39, m_2 = 11$
		$\beta_3 = 50, m_3 = 1$
dynamical	0.9999975	dynamical

dynamical means that using feedback β is varied on a slot basis depending on the decoder state:

how much can we improve the performance?

slot classes	P_k	parameters
1	0.9334	$\beta = 3.33, m = 100$
2	0.9986	$\beta_1 = 2.53, m_1 = 86$
		$p_2 = 22.06, m_2 = 14$ $\beta_1 = 2.51, m_1 = 88$
3	0.99917	$\beta_2 = 17.39, m_2 = 11$
		$\beta_3 = 50, m_3 = 1$
dynamical	0.9999975	dynamical

- dynamical means that using feedback β is varied on a slot basis depending on the decoder state:
 - the number of slots in each cloud type $C_u^{(i)}$

how much can we improve the performance?

slot classes	P_k	parameters
1	0.9334	$\beta = 3.33, m = 100$
2	0.9986	$\beta_1 = 2.53, m_1 = 86$
		$\beta_2 = 22.08, m_2 = 14$
3	0 99917	$\beta_1 = 2.51, m_1 = 88$ $\beta_2 = 17.39, m_2 = 11$
	0.00017	$\beta_2 = 11.05, m_2 = 11$ $\beta_3 = 50, m_3 = 1$
dynamical	0.9999975	dynamical

- dynamical means that using feedback β is varied on a slot basis depending on the decoder state:
 - the number of slots in each cloud type $C_{u}^{(i)}$
 - the number of decoded users

Introduction

Frameless ALOHA

Finite Length Analysis

Latency-Reliability Guarantees

Conclusions

 our work is based on an exact finite-length analysis of frameless ALOHA in the collision channel

- our work is based on an exact finite-length analysis of frameless ALOHA in the collision channel
- the analysis yields the exact probability of meeting a latency-reliability target

Conclusions

- our work is based on an exact finite-length analysis of frameless ALOHA in the collision channel
- the analysis yields the exact probability of meeting a latency-reliability target
- application example: introducing different slot classes we can decrease the probability of not meeting a latency-reliability target by almost 2 orders of magnitude

Conclusions

- our work is based on an exact finite-length analysis of frameless ALOHA in the collision channel
- the analysis yields the exact probability of meeting a latency-reliability target
- application example: introducing different slot classes we can decrease the probability of not meeting a latency-reliability target by almost 2 orders of magnitude
- a dynamical strategy can provide even further gains (2 orders of magnitude better than static).