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» random access (RA) protocols are effective when the nature of the traffic
is unpredictable and/or when the number of active devices is dynamic
and the total population very large

» the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted
ALOHA [Rob-75], which have been adopted in many standards (GSM,
UMTS, DVB-RCS2, ...), typically for control channels only. Issues:

» low peak throughput (1/(2e) and 1/e respectively)
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1970 Fall Joint Comput. Conf. (AFIPS)
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» random access (RA) protocols are effective when the nature of the traffic
is unpredictable and/or when the number of active devices is dynamic
and the total population very large

» the earliest examples of RA protocols are ALOHA [Abr-70] and Slotted
ALOHA [Rob-75], which have been adopted in many standards (GSM,
UMTS, DVB-RCS2, ...), typically for control channels only. Issues:

» low peak throughput (1/(2e) and 1/e respectively)
» high packet loss rate even for low load

[Abr-70] N. Abramson “The ALOHA system: Another alternative for computer communications”, in Proc. of the
1970 Fall Joint Comput. Conf. (AFIPS)

[Rob-75] L.G. Roberts “ALOHA Packet System with and without Slots and Capture”, in Proc. SIGCOMM Comput.
Commun. Rev., ACM, 1975
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Advanced Random Access protocols

» recently it has been shown that much higher efficiency can be obtained
by introducing time diversity (replication) and successive interference
cancellation (SIC) at the receiver

» examples:
» CRDSA [Cas-07]
» IRSA [Liva-11]

[Cas-07] E. Casini, R. De Gaudenzi, and O. del Rio Herrero, “Contention Resolution Diversity Slotted ALOHA
(CRDSA): An Enhanced Random Access Scheme for Satellite Access Packet Networks”, IEEE Trans.
on Wireless Commun., vol. 6, no. 4, pp. 1408-1419, April 2007

Liva-11] G. Liva, “Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted ALOHA",
|EEE Trans. Commun., vol. 59, no. 2, pp. 477-487, Feb. 2011
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Frameless ALOHA

» Frameless ALOHA is a slotted RA protocol that exploits ideas originating
from the rateless coding framework:

» the length of the contention period is not fixed a priori
> every user is active (sends a packet) in a slot with probability p

n users

Q‘P*-n m slots
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since all users are recovered we can terminate the contention after 5 slots



Finite Length Analysis



C. Stefanovi¢ | Frameless ALOHA

Finite Length Analysis ((( }
Definitions

Definition (Ripple)

We define the ripple as the set of singleton slots (reduced degree 1) and we
denote it by %.

the cardinality of the ripple is denoted by r and its associated random
variable as R.

Definition (Cloud)

We define the cloud as the set of slots with reduced degree d > 2 and we
denote it by € .

the cardinality of the cloud is denoted by ¢ and the corresponding random
variable as C.
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Finite Length Analysis

Bipartite Graph Representation
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Finite Length Analysis

Bipartite Graph Representation
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» the slot degree distribution is given by

Q; = <7> P —p).
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Finite Length Analysis

Bipartite Graph Representation

» the slot degree distribution is given by

Q= <f’> p(1—p)"".

» in the collision channel, the iterative SIC process can be seen as an
iterative pruning of the bipartite graph.

» intially all n users are unresolved
> at every iteration:
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Finite Length Analysis

Bipartite Graph Representation

» the slot degree distribution is given by

ny i n—i
Qi = l_p(1—p) .

» in the collision channel, the iterative SIC process can be seen as an
iterative pruning of the bipartite graph.
» intially all n users are unresolved
» at every iteration:
» if there are singleton slots — one user is resolved
» if there are no singleton slots decoding stops
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» the iterative SIC process can be modelled by means of a finite state
machine with state:
Su = (Cu, Ru)
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Finite Length Analysis

Finite State Machine

» the iterative SIC process can be modelled by means of a finite state
machine with state:
Su = (Cu, Ru)

» Cy: cardinality of cloud when u users are unresolved
» Ry: cardinality of ripple when u users are unresolved
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Finite Length Analysis : ((( K¢

Transition from u to u — 1 resolved users
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» by: the number of slots leaving %, and entering %1
by i=cy— cy_1

» B,: associated random variable
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Finite Length Analysis

Transition from u to u — 1 resolved users

» a,: the number of slots leaving the ripple Z, in the transition
» Ayl rVv. associated to ay
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Finite Length Analysis

Main Result

Theorem
Given that the decoder is at state Sy = (cu, ru), when u users are unresolved and with
ry > 0, the probability of the decoder being at state Pr{s,_1 = (cy_1,ry_1)} when

u — 1 users are unresolved is given by

Pr{Su,1 = (Cu — by, ry —au+ bu)‘SU = (CU7 ru)} =

(;5)%%(1 — qu)cuPu (:: : 1) y <1B>au—1 <1 - %)ru*au

for0 < by < cy, by — ay < ry and ay > 1, and with

n—u—2

dze Qgd(d—1)14

—

i)

i2)

("a")
()

1

—~

Qu

3
<

n—u—1 <N7U>
1— 3 Qudss— % Qg
d=1 <d> d=0
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Finite Length Analysis

Throughput and PER

» In practice one is interested in the packet error rate Pe

P = ;Z%Pr{su — (cu,0)}.
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Finite Length Analysis

Throughput and PER

» In practice one is interested in the packet error rate Pe

n

o= DD T Pr{su = (cu,0)}.

u=1 cy

» The throughput T is the number of resolved users normalized by the
number of slots:
n(1—Pe) 1—Pe
T= = .
m m/n
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Finite Length Analysis ((( 14

Throughput for 3 = 2.5, for n = 100 oy
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Finite Length Analysis ((( 15

PER for 8 = 2.5, for n = 100 “one s
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Motivation

» the analysis provides not only the PER but it can provide the exact
probability that k users are undecoded after m slots
» it provides a latency-reliability guarantee
» in some applications one wants to decode at least k out of n with a very high
probability (for example, vehicular networks or industrial automation)
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» the analysis provides not only the PER but it can provide the exact
probability that k users are undecoded after m slots
» it provides a latency-reliability guarantee
» in some applications one wants to decode at least k out of n with a very high
probability (for example, vehicular networks or industrial automation)
» Example: n = 50 users, m = 100 slots

012

01

81072 (¢

11072

21077

0 B 10 5 20 2 30 8% a0 4 0

n. of undecoded users
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>

the analysis can be used to optimize the performance of frameless Aloha
» we can perform the following optimization

» maximize Py the probability that at least k users out of n are decoded after a

contention of m slots

in this presentation we shall focus on the following scenario

» number of users: n = 50

» reliability target: Kk = n =50

» latency target (in slots): 100

v

» in this scenario the optimal parameter is g = 3.33, which leads to
P = 0.9334
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Latency-Reliability Guarantees

Optimization

» the analysis can be used to optimize the performance of frameless Aloha
» we can perform the following optimization

» maximize Py the probability that at least k users out of n are decoded after a
contention of m slots

» in this presentation we shall focus on the following scenario

» number of users: n = 50
» reliability target: Kk = n =50
» latency target (in slots): 100

» in this scenario the optimal parameter is g = 3.33, which leads to
P = 0.9334

» this value of P, might be too high for many applications
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Latency-Reliability Guarantees

Optimization Il

» How can we improve the performance?
» we can have different classes of slots

» my slots with 34
» mo slots with 35
>

v

my, slots with 3y,
» the analysis needs to be modified

» the iterative SIC process is modelled by means of a finite state machine with

state: ™) @ )
Su:=(Cy’,Cy’y. ., Cy  Ru)
> C(Ui): cardinality of i-th cloud when u users are unresolved (number of slots of
type i with reduced degree 2 or larger)

» Ry: cardinality of ripple when u users are unresolved
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» how much can we improve the performance?

| slot classes | Py \ parameters
1 0.9334 £ =3.33, m=100
By =253, m =86
2 0-9986 | 5 _ 2008, m, — 14
61 =251, m = 88
3 0.99917 B2 =17.39, m, = 11
B3 =50, m3 =1
dynamical | 0.9999975 dynamical
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» how much can we improve the performance?

| slot classes | Px \ parameters \
1 0.9334 B =3.33, m=100
p1 =253, m = 86
2 0.9986 o =22.08, my =14
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3 0.99917 B2 =17.39, mp = 11
Ps =50, my =1
dynamical | 0.9999975 dynamical

» dynamical means that using feedback 5 is varied on a slot basis
depending on the decoder state:
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» dynamical means that using feedback 5 is varied on a slot basis
depending on the decoder state:

» the number of slots in each cloud type Cff)
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Optimization - Results

» how much can we improve the performance?

| slot classes | Px \ parameters \
1 0.9334 B =3.33, m=100
p1 =253, m = 86
2 0.9986 o =22.08, my =14
By =251, m =88
3 0.99917 B2 =17.39, mp = 11
Ps =50, my =1
dynamical | 0.9999975 dynamical

» dynamical means that using feedback 5 is varied on a slot basis
depending on the decoder state:
» the number of slots in each cloud type Cff)
» the number of decoded users
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Conclusions

» our work is based on an exact finite-length analysis of frameless
ALOHA in the collision channel

» the analysis yields the exact probability of meeting a latency-reliability
target

» application example: introducing different slot classes we can decrease
the probability of not meeting a latency-reliability target by almost 2
orders of magnitude

» a dynamical strategy can provide even further gains (2 orders of
magnitude better than static).
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