

Čedomir Stefanović

Cellular access protocols

- All (mobile) cellular standards use a similar algorithm for the initial connection establishment
- Access Reservation Protocol:

- L. G. Roberts, "Aloha packet system with and without slots and capture," SIGCOMM Comput. Commun. Rev., Apr. 1975.
- N users, single access point (AP)
 - Homogenous population
 - Equal length packets
- Random access
 - Distributed, decentralized
 - User behave in the same way
- Link time is divided in slots of equal duration
 - Slot-synchronization of the users is assumed
- Users contend for the access to the base station

- Each users contends (transmits) with a predefined probability p_A
- A slot can be:
 - Idle
 - Singleton (i.e., containing single transmission)
 - Collision (containing multiple transmissions)
 - Colisions are destructive!
- Feedback after every slot
 - Unsuccessful users contend in the next slot with (possibly changed) p_A

N users

• Throughput:

- Measure of efficiency of use of system resources (slots)
- Average fraction of slots with successful transmission attempts
 - I.e., fraction of singleton slots
- Probability that a slot is a singleton:

$$- T = {N \choose 1} p_A (1-p)^{N-1} \approx N p_A e^{-Np_A}$$
$$- T_{max} = \frac{1}{e} \approx 0.37 \text{ (when } N p_A = 1\text{)}$$

N users

Framed slotted ALOHA

- H. Okada, Y. Igarashi, Y. Nakanishi, "Analysis and application of framed ALOHA channel in satellite packet switching networks", Electronics and Communications, 1977
- Each users transmits just once in a randomly selected slot of the frame
- Again, only singleton slots are useful
- Feedback on a frame basis
- Throughput:
 - Probability that a slot is a singleton:

•
$$T = {N \choose 1} \left(\frac{1}{M}\right) \left(1 - \frac{1}{M}\right)^{N-1} = \frac{N}{M} e^{-\frac{N}{M}}$$

- $T_{max} = \frac{1}{e} \approx 0.37 \text{ (when } \frac{N}{M} = 1\text{)}$

M slots N users Frame

SLOTTED ALOHA BEYOND THE COLLISION MODEL

Contention resolution diversity slotted ALOHA

- E. Casini, R. De Gaudenzi, O. del Rio Herrero, "Contention Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Scheme for Satellite Access Packet Networks", IEEE Trans. Wireless Communications, 2007
- Users repeat their transmission in several randomly chosen slots of the frame
 - Same number of replicas per user
- Collisions can be exploited!
 - Successive interference cancellation (SIC)
 - Improves throughput
 - $T \approx 0.55$ for CRDSA with two repetitions per user

M slots N users

Frame

SIC in slotted ALOHA-based protocols

• Each successfully decoded replica enables canceling (removal) of other replicas

- In the first approximation, it is assumed that interference cancellation is perfect
 - Valid in certain systems satellite communications with moderate to high SNR

Irregular repetition slotted ALOHA

- G. Liva, "Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted ALOHA," IEEE Trans. Communications, 2011.
- Generalization of CRDSA
 - Repetition rate can vary across users
 - Every user selects its no. of repeated transmissions according to a predefined distribution
- Interference cancellation (IC) can be seen as iterative procedure performed on the graph
 - Resembles decoding procedure of erasure correcting codes
- IC in frame-slotted ALOHA analogous to fixed-rate block error-correction coding

Irregular repetition slotted ALOHA

- Left degrees can be directly controled
- Right degrees can be only indirectly controlled
 - Poisson distributed with "indirectly controllable" mean
- Optimal repetition strategies (i.e., optimal user degrees) are drawn according to the distributions that are used for left-irregular LDPC codes
- Plenty of subsequent results:
 - Analogies with LDPC codes, optimal distributions
 - Capacity bounds
 - Asymptotically throughput tends to 1, but modest throughputs for more realistic number of users (50 - 1000)

Successive interference cancellation

Frameless ALOHA

- C. Stefanovic, P. Popovski, D. Vukobratovic, "Frameless ALOHA Protocol for Wireless Networks", IEEE Communication Letters, Dec. 2012
- Idea: Apply paradigm of rateless codes to slotted ALOHA:
 - No predefined frame length
 - Slots are successively added until a criterion related to performance parameters of the scheme is satisfied
 - Optimization of the slot-access probability and termination criterion

Frameless ALOHA: Optimization of the slot access probability

- The simplest case:
 - All users use the same slot access probability p_a for all the slots

$$p_a = \frac{\beta}{N}$$

 $-\beta$ is the average slot degree

• Goal: Maximize throughput *T*

$$T = \frac{N_R}{M} = \frac{P_R N}{M}$$

- $N_{\rm R}$ is the number of resolved users (transmissions)
- P_R is the probability of user resolution
- Select β such that throughput is maximized

And-or tree evaluation: Asymptotic analysis tool

And-or tree evaluation: Message update rules

OR nodes

- Outgoing message is 1 if any of the incoming messages is 1
 - Message 1 = user (transmission) decoded

AND nodes

- Outgoing message is 1 if all incoming messages are 1
 - Message 1 = user decoded

And-or tree evaluation: Message update probabilities

OR nodes

- *p* probability that the value of the incoming message is zero
- *q* probability that the value of the outgoing message is zero

$$q = p^{k-1}$$

AND nodes

- *p* probability that the value of the outgoing message is zero
- q probability that the value of the incoming message is zero

 $p = 1 - (1 - q)^{j - 1}$

And-or tree evaluation: Message update probabilities

OR nodes

• The expected (i.e., average) probability that the outgoing message is 0 is:

•
$$q = \sum_k \lambda_k p^{k-1} = \lambda(p)$$

- where:
 - λ_k probability that message is egressing a node of degree $k, \sum_k \lambda_k = 1$

$$-\lambda(x) = \sum_k \lambda_k x^{k-1}$$

AND nodes

• The expected (i.e., average) probability that the outgoing message is 0 is:

•
$$p = \sum_{j} \omega_{j} (1 - (1 - q)^{j-1})$$

• =
$$1 - \omega(1 - q)$$

- where:
 - ω_j probability that message is egressing a node of degree $j, \sum_j \omega_j = 1$

$$-\omega(x) = \sum_j \omega_j x^{j-1}$$

edge-oriented degree distributions

And-or tree evaluation

$$q(i) = \lambda \left(1 - \omega (1 - q(i - 1)) \right)$$

$$q(i) = \lambda (p(i - 1))$$

$$p(i - 1) = 1 - \omega (1 - q(i - 1))$$

$$q(i - 1) = \lambda (p(i - 2))$$

$$p(i - 2) = 1 - \omega (1 - q(i - 2))$$

$$q(i - 2)$$

And-or tree evaluation: Performance parameters

- And-or tree evaluation shows the expected asymptotic performance based on the statistical graph description expressed through $\lambda(x)$ and $\omega(x)$
- Probability of user resolution:

$$P_R = 1 - \lim_{i \to \infty} q(i)$$

- with the initial value q(0) = 1

• Asymptotic throughput is:

$$T = \frac{P_R N}{M}$$

And-or tree evaluation: Deriving the slot degree distribution

• Slot s

– Slot access probability p_A (same for all users)

$$- p_{\rm A} = \frac{\beta}{N}$$

- β is the average degree of slot s (load of slot s)
 - Actual degree of slot *s* is determined by binomial distribution (which can be approximated by Poisson distribution):

•
$$P[|s| = k] = {N \choose k} (p_A)^k (1 - p_A)^{N-k} \approx \frac{\beta^k}{k!} e^{-\beta} = \Omega_k$$

• Slot degree distribution:

$$- \quad \Omega(x) = \sum_k \Omega_k x^k = e^{-\beta(1-x)}$$

• Edge-oriented degree distribution:

$$- \omega_k = \frac{k \Omega_k}{\sum_j j \Omega_j}$$
$$- \omega(x) = \sum_k \omega_k x^k = e^{-\beta(1-x)}$$

And-or tree evaluation: Deriving the user degree distribution

- User *u*
 - Assume that there are *M* slots

$$P[|\mathbf{u}| = k] = {\binom{\mathsf{M}}{k}} (p_{\mathsf{A}})^{k} (1 - p_{\mathsf{A}})^{M-k} \approx \frac{(Mp_{\mathsf{A}})^{k}}{k!} e^{-Mp_{\mathsf{A}}} = \frac{\left((1 + \epsilon)\beta\right)^{k}}{k!} e^{-(1 + \epsilon)\beta} = \Lambda_{k}$$

• where
$$(1 + \epsilon) = \frac{M}{N}$$

• User degree distribution:

$$- \Lambda(x) = \sum_k \Lambda_k x^k = e^{-(1+\epsilon)\beta(1-x)}$$

• Edge-oriented degree distribution:

$$- \lambda_k = \frac{k \Lambda_k}{\sum_j j \Lambda_j}$$
$$- \lambda(x) = \sum_k \lambda_k x^k = e^{-(1+\epsilon)\beta(1-x)}$$

And-or tree evaluation: Message update probabilities

•
$$q_i = \lambda(p_{i-1}) = e^{-(1+\epsilon)\beta(1-p_{i-1})}$$

•
$$p_i = 1 - \omega(1 - q_i) = 1 - e^{-\beta(1 - q_i)}$$

And-or tree evaluation

- Our graphs are not trees!
 - There are loops
 - i.e., there are interdependencies among messages
 - The results obtained by the andor tree evaluation pose upper limits on the performance

Optimizing the slot access probability: Results

- All slots have the same expected degree β :
 - Asymptotic analysis ($N \rightarrow \infty$) and or tree evaluation
 - Simulations for N = 100,500,1000,5000,10000

Maximal throughput

Optimal slot degree (which yields maximal throughput)

Probability of user resolution

- C. Stefanovic, P. Popovski, "ALOHA Random Access that Operates as a Rateless Code", IEEE Trans. Communications, Nov. 2013
- Single feedback used after *M*-th slot
 - *M* not defined in advance
 - Analogous to rateless coding framework!
- After feedback, new contention period
- When to send feedback?
 - E.g., when the throughput is high enough (ideally the highest possible)

- The graph shows the evolution of the probability of user resolution P_R and the throughput T in the asymptotic settings for the optimal $\beta \approx 3.1$
- Asymptotically optimal way to maximize throughput:
 - End the contention when the throughput starts to drop

- An example of a typical run of frameless ALOHA in terms of:
 - fraction of resolved users

$$F_R = \frac{N_R}{N}$$

instantaneous throughput

$$T_R = \frac{N_R}{M}$$

Fraction of resolved users, F 0.9 Instantaneous throughput, T 0.8 07 0.6 0.5 0.4 0.3 0.2 0.1 01 02 03 04 05 06 0.8 09 11 12 13 14 15 M/N

genie-aided stopping criterion: stop when T is maximal heuristic stopping criterion: fraction of resolved users

- Heuristic termination criterion:
- Stop the contention when:

$$- F_R \ge V, \text{ or}$$
$$- T_I = 1$$

• The highest reported nonasymptotic throughputs so far

N	50	100	500	1000
T _{GA}	0.83	0.84	0.88	0.88
Т	0.82	0.84	0.87	0.88
F_R	0.75	0.76	0.76	0.76
M/N	0.97	0.95	0.9	0.9
β	2.68	2.83	2.99	3.03
V	0.83	0.87	0.88	0.89

Frameless ALOHA: Average delay

- The frameless structure provides an elegant framework to compute the average delay of the resolved users
- Average delay as a function of the total number of contention slots M

$$D(M) = \sum_{m=1}^{M} (1 - P_R(m) / P_R(M))$$

- Observations
 - Average delay shifted towards the end of the contention period
 - Most of the users get resolved close to the end
 - Typical for the iterative beliefpropagation
 - NB: we have not optimized the protocol for delay minimization

Noise-induced errors

• Received signal in a slot when the noise is plugged in:

$$Y = \sum_{k} X_k + Z$$

• Theorem:

The throughput of the "noisy" frameless ALOHA with perfect SIC is:

$$T_n = T \cdot P_D$$

where T is the throughput of the noiseless frameless ALOHA with perfect SIC and P_D is the probability that a singleton slot is useful.

Frameless ALOHA: Estimating the number of contending users

- C. Stefanovic, K. F. Trilingsgaard, N. K. Pratas, P. Popovski, "Joint Estimation and Contention-Resolution Protocol for Wireless Random Access", IEEE ICC 2013.
- Slot access probability:

Frameless ALOHA: Estimating the number of contending users

Estimation algorithm

- Notation:
 - \hat{N} estimation of N, N_{Ci} number of users contending in the i-th round
 - s_{ij} j-th slot of the i-th slot round, $|s_{ij}|$ corresponding degree
 - p_{ij} corresponding slot-access probability
- Slots (i.e., observations) can be idle, single or collision slots
- Pmf of the observations, given (unknown) N_{Ci} is:

$$f(s_{ij}|n) = \begin{cases} (1-p_{ij})^{n_{Ci}} & \text{if } |s_{ij}| = 0, \\ n_{Ci}p_{ij}(1-p_{ij})^{n_{Ci}-1} & \text{if } |s_{ij}| = 1, \\ 1-(1-p_{ij})^{n_{Ci}-1} & \\ -n_{Ci}p_{ij}(1-p_{ij})^{n_{Ci}-1} & \text{if } |s_{ij}| > 1. \end{cases}$$

Estimation algorithm

• MLE approach:

$$\hat{N} = \arg\max_{n} \prod_{i,j} f(s_{ij}|n) = \arg\max_{n} \sum_{i,j} \ln f(s_{ij}|n)$$

• Slots are independent:

$$\sum_{\substack{s_{ij} \in \mathcal{O}_0 \cup \mathcal{O}_1}} \ln(1 - p_{ij}) + \sum_{\substack{s_{ij} \in \mathcal{O}_1}} \frac{1}{n_{Ci}} + \sum_{\substack{s_{ij} \in \mathcal{O}_C}} \frac{(1 - p_{ij})^{n_{Ci}} [1 + \ln(1 - p_{ij})(\frac{1}{p_{ij}} + n_{Ci} - 1)]}{1 - \frac{1}{p_{ij}} + (1 - p_{ij})^{n_{Ci}} (\frac{1}{p_{ij}} + n_{Ci} - 1)} = 0$$

Can be efficiently solved using some root-finding method, e.g. Brent's method

Estimation algorithm

- End the estimation round when *K* successive idle slots are observed
- Hard to deal with analytically
- Simulations show that the estimator is unbiased and its output has a Gaussian pdf
- Slot access probability in the estimation round changes as:

 $p_{1i} =$

$$\frac{p_0}{\alpha^j}$$
 p_0/α^j

• RMSE depends on N, K, p_0 and α

Estimation algorithm: Root-mean square error

Frameless ALOHA: Throughput with the estimation included

Capture effect

- So far, we assumed that the collision slots can be exploited only when they become singleton slots through successive cancellation of the already resolved transmissions
 - I.e., through inter-slot SIC
- However, in practice, collision slots may be already exploitable due to the capture effect
 - Capture effect often occurs in wireless communications
- Typical model:
 - Transmission of user u_i is captured in slot if the following condition is satisfied:

42

Capture effect

• Capture effect implicitly assumes unequal received powers of the user transmissions:

$$Y = \sum_{k} h_k X_k + Z$$

• Example:

$$Y = 10X_1 + X_2 + Z$$

• There is a chance that u_1 captures the slot over u_2 and the noise

Capture effect in coded slotted ALOHA

• Example:

$$Y = 10X_1 + X_2 + Z$$

• If u_1 captures the slot, then it is decoded and removed (perfectly) which yields:

$$Y = X_2 + Z$$

- so, there is a probability that u_2 can capture the slot via inter-slot IC

Capture effect and and-or tree evaluation

- C. Stefanovic, M. Momoda, P. Popovski, "Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access", IEEE WCNC 2014.
- "CAPTURE" instead of AND operation
- Very hard to analyze in the general case
- Simplifying assumptions:
 - User channels are IID
 - Expected received powers are the same for all users
 - Interference cancellation is perfect

Capture effect and and-or tree evaluation

• AND operation becomes:

$$p = \sum_{j} \omega_{j} \sum_{t=0}^{j-1} \pi_{t} \binom{j-1}{t} q^{t} (1-q)^{j-1-t}$$

Probability that user captures slot when t interfering users remain

- Narrowband system, valid for typical M2M scenarios:
 - Capture threshold $b \leq 1$
- Rayleigh fading scenario
 - pdf of SNR user u_i at the reception point:

$$p_{X_i}(x) = \frac{1}{\gamma} e^{-\frac{x}{\gamma}}, x \ge 0$$

- γ the same expected SNR for every user
- Capture probability is: $\pi_t = \sum_{h=1}^{t+1} \frac{e^{\frac{1-(1+b)^h}{\gamma}}}{(1+b)^{\left(t-\frac{h-1}{2}\right)h}}, \qquad t \ge 0$

Frameless ALOHA with capture: Asymptotic analysis

Frameless ALOHA with capture: Non-asymptotic results

Ν	b	1		2		no capture
	b/γ	0.1	1	0.1	1	and no noise
100	Т	1.92	0.41	1.21	0.31	0.8
	G	6.14	2.23	4.53	1.55	2.89
1000	Т	2.13	0.42	1.33	0.32	0.86
	G	6.91	2.38	5.1	2.15	3.04
∞	Т	2.37	0.68	1.46	0.49	0.88
	G	7.2	6.37	5.29	4.69	3.12

Frameless ALOHA with capture

- For high SNR, i.e., low *b*/*SNR*, substantially higher throughputs can be achieved
 - Throughput is well over 1!
 - The throughput decreases as b increases
- For low SNR, i.e., high b/SNR, the achievable throughputs drop
 - This is due to the impact of noise
- Target slot degrees G are higher than in the case without capture effect
 - I.e., the capture effect favors collisions

Frameless ALOHA with capture and with compressive sensing receiver

- Y. Ji, C. Stefanovic, C. Bockelmann, A. Dekorsy, Petar Popovski, "Characterization of Coded Random Access with Compressive Sensing based Multi-User Detection", IEEE Globecom 2014
- Compressive sensing receiver = Multi-user detection (MUD)

Frameless ALOHA with capture and with compressive sensing receiver

- Evaluation setup:
 - Multi-User uplink CDMA system
 - No. of nodes: N = 128
 - Spreading sequence Ns = 32
 - L = 104 symbols per frame & BPSK
 - Conv. code $R_c = 0.5$ & constraint length $l_c = 3$
 - Freq. selective Rayleigh fading
 - Perfect channel knowledge at Base Station
 - Group Orthogonal Matching Pursuit as CS-MUD algorithm

Frameless ALOHA with capture and with compressive sensing receiver

- Observations:
 - 10dB: less slots -> mainly intra-slot IC
 - 5dB: more slots -> interand intra-slot IC

Frameless ALOHA with capture and imperfect SIC

• Model:

- Transmission of user u_i is captured in slot if the following condition is satisfied:

- Slot degree |s| = j + k + 1
- As user resolution progresses, users interfering in the same slot "move" from $\sum_j P_j$ to $\sum_k Q_k$

Frameless ALOHA with capture and imperfect SIC in wideband scenario

- So far, we assumed a narrowband scenario
 - I.e., capture threshold is: $b \ge 1$
 - At any moment, only a single user can capture the slot
- Wideband scenario:
 b < 1
 - Multiple users can capture the slot simultaneously

Applying coded random access to existing protocols

- E. Paolini, C. Stefanovic, G. Liva, P. Popovski, "Coded Random Access: Applying Codes on Graphs to Design Random Access Protocols", IEEE Communications Magazine, Jun. 2015
- Coded random access virtualizes multiple frames in a super-frame and runs the SIC algorithm

but no changes to the transmission format at the devices

